微智科技网
您的当前位置:首页poj2533

poj2533

来源:微智科技网

Longest Ordered Subsequence

Time Limit: 2000MSMemory Limit: 65536K
Total Submissions: 18511Accepted: 7963

Description

A numeric sequence of  ai is ordered if  a1 <  a2 < ... <  aN. Let the subsequence of the given numeric sequence ( a1a2, ...,  aN) be any sequence ( ai1ai2, ...,  aiK), where 1 <=  i1 <  i2 < ... <  iK <=  N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

Source

, Far-Eastern Subregion

 
DP: LIS, poj1836是他的升级版
#include <iostream>
#include <cstring>

using namespace std;

const int Size=1000;
int dp[Size+1];
int sq[Size+1];

int main()
{
    int n;
    int rlt;

    while(cin>>n)
    {
        memset(dp,0,sizeof(dp));
        for(int i=1; i<=n; i++)
        {
            cin>>sq[i];
        }
        //dp
        for(int i=1; i<=n; i++)
        {
            dp[i]=1;
            for(int j=1; j<=i-1; j++)
            {
                if(sq[j]<sq[i])
                {
                    if(dp[i]<dp[j]+1)
                    {
                        dp[i]=dp[j]+1;
                    }
                }
            }
        }
        rlt=0;
        for(int i=1; i<=n; i++)
        {
             if(rlt<dp[i])
                 rlt=dp[i];
        }
        cout<<rlt<<endl;
    }
    return 0;
}

转载于:https://www.cnblogs.com/eric-blog/archive/2011/05/25/2056780.html

因篇幅问题不能全部显示,请点此查看更多更全内容