微智科技网
您的当前位置:首页Design Spaces for analytical methods1

Design Spaces for analytical methods1

来源:微智科技网
TrendsinAnalyticalChemistry,Vol.42,2013Trends

DesignSpacesforanalyticalmethods

E.Rozet,P.Lebrun,B.Debrus,B.Boulanger,P.Hubert

SincetheadoptionoftheICHQ8documentconcerningthedevelopmentofpharmaceuticalprocessesfollowingaQualitybyDesign(QbD)approach,therehavebeenmanydiscussionsontheopportunityforanalyticalmethoddevelopmentstofollowasimilarapproach.AkeycomponentoftheQbDparadigmisthedefinitionoftheDesignSpace(DS)ofanalyticalmethodswhereassuranceofqualityisprovided.SeveralDSsforanalyticalmethodshavebeenpublished,stressingtheimportanceofthisconcept.

ThisarticleaimstoexplainwhatananalyticalmethodDSis,whyitisusefulfortherobustdevelopmentandoptimizationofanalyticalmethodsandhowtobuildsuchaDS.Wedistinguishtheusualmeanresponsesurfaceapproach,overlappingmeanresponsesurfacesandthedesirabilityfunctionasonlytheycorrectlydefineaDS.WealsoreviewanddiscussrecentpublicationsassessingtheDSofanalyticalmethods.ª2012ElsevierLtd.Allrightsreserved.

Keywords:Analyticalmethoddevelopment;DesignofExperiments;DesignSpace(DS);Desirabilityfunction;Meanresponsesurface;Optimization;Probabilitymap;Qualityassurance;QualitybyDesign(QbD);Robustness

E.Rozet*,P.Lebrun,P.Hubert

AnalyticalChemistry

Laboratory,CIRM,Universityof

`ge,AvenuedelÕHoˆpital1,Lie

`ge,BelgiumB36,B-4000LieB.Debrus

SchoolofPharmaceuticalSciences,UniversityofGeneva,

SwitzerlandB.Boulanger`ge,BelgiumArlendas.a.,Lie

1.Introduction

Theconceptofqualitybydesign(QbD)has

beenrecentlyadoptedinthepharmaceuti-calindustrythroughseveralinitiatives{e.g.,FDAÕscGMPforthe21stCentury[1],ProcessAnalyticalTechnology(PAT)[2],andthenewregulatorydocuments,ICHQ8[3],Q9[4]andQ10[5]}.Thegeneralaimistoswitchfromthequalitybytesting(QbT)paradigmpreviouslyimplementedinthepharmaceuticalindustrytoadevelopmentaimedatimprovingtheunderstandingoftheprocessesandtheproductsandhenceimprovingproductquality,processefficiencyandregulatoryflexibility.

QbDisnotnewandinvolvesmanyqualityandstatisticaltoolsandmethods(e.g.,sta-tisticaldesignsofexperiments,multivariatestatistics,SixSigmamethodologies,andstatisticalqualitycontrol).Inordertoraisethequalityofpharmaceuticalproducts,ithasonlyrecentlybeenrecognizedthatincreasingthetestingoffinalproducts(i.e.QbT)isnotadequate[6].Instead,toincreasethequalityofpharmaceuticalproducts,qualitymustbebuiltintotheproducts(i.e.QbD),asalreadydoneinmanyotherindustries.Itrequiresunderstandingofhow

*Correspondingauthor.Tel.:+32436320;Fax:+32436317;

E-mail:eric.rozet@ulg.ac.be

variablesinvolvedinformulationandmanufacturingprocessesinfluencethequalityofthefinalproduct.ExamplesofapplicationsofQbDtopharmaceuticalpro-cessescanbefoundinnumerouscasestudiesintheliterature[e.g.,7–18].

Ithasbeenemphasizedthatanalyticalproceduresarealsoprocesses,andthatQbDcouldandshouldbeimplementedforthedevelopmentofanalyticalprocedures,astheyarenon-negligiblecomponentsoftheglobalpharmaceutical-productprocess[19].SeveralexamplesanddiscussionsaboutthedevelopmentofanalyticalmethodsfollowingtheQbDconceptareavailable,e.g.,[20–22].

AkeycomponentofthedevelopmentofanalyticalprocedureusingQbDiswhathasbeencalledtheDesignSpace(DS).TheaimofthisreviewarticleistofocusontheDSofanalyticalmethods.First,wesummarizethegeneralframeworkofQbDdevelopmentofanalyticalmethodstosituatethespecificplaceofDSinthisstrategy.Then,weprovideexplanationofwhatisDS,whyitisusefultodefinetheDSofanalyticalmethodsandhowtocorrectlycomputeandbuildtheDS.Toachievethis,wealsoreviewrecentpublica-tionsassessingtheDSofanalyticalmethods.

0165-9936/$-seefrontmatterª2012ElsevierLtd.Allrightsreserved.doi:http://dx.doi.org/10.1016/j.trac.2012.09.007

157

TrendsTrendsinAnalyticalChemistry,Vol.42,2013Figure1.TypicalstepsofQualitybyDesigndevelopmentofanalyticalmethodshighlightingtheplaceoftheconceptofanalyticalmethoddesignspace.ATP,AnalyticalTargetProfile;CQA,CriticalQualityAttribute;FMEA,FailureModeandEffectAnalysis;SST,SystemSuitabilityTests.2.PlaceofDesignSpaceinQbDanalyticalmethoddevelopment

TostartthedevelopmentofaQbDcompliantanalyticalmethodandfinallyreachthedefinitionofitsDS,several158

stepsillustratedinFig.1havetobeperformed.Thissectionsummarizesthemainstepsusuallyrequired.DeeperdetailscanbefoundintheexhaustivereviewofVogtandKord[19]aswellasinthefollowingdocu-ments[20–23].

http://www.elsevier.com/locate/trac

TrendsinAnalyticalChemistry,Vol.42,2013Thefirststepistodefinetheintendedpurposeoftheanalyticalmethod.ThishasbeencalledtheAnalyticalTargetProfile(ATP)[20–22,24]whichissimilartotheQualityTargetProductProfile(QTPP)forpharmaceutical-process.ThisATPwillbeasetofcri-teriathatdefineswhatwillbemeasured,inwhichmatrix,overwhatconcentrationrange,andthere-quiredperformancecriteriaofthemethod,togetherwithspecificationsfortheselastones.TheseperformancecriteriacanbecalledCriticalQualityAttributes(CQAs)oftheanalyticalmethodtokeepanomenclatureclosetotheoneusedinpharmaceutical-processdevelopment.ExamplesofATPfortheinterestedreadersareavailable[20–22,24].

Themethodunderdevelopmentwillthenfollowariskassessment[19].Theanalyticalmethodcanbedecom-posedinaflow-charthighlightingthemainstepsoftheprocedurefromsamplepreparationtodataanalysis.Thisallowsidentifyingparametersthatshouldbestudiedduringtheriskassessment.

Typically,thefirststepintheriskassessmentistobuildafishbonediagram(orIshikawadiagram)toidentifyfurtherpotentialfactorsandrelatethemtotherequire-mentincludedintheATP[25].Thisdiagramclassifiesrisksingroupsrelatedtoinstrumentation,materials,methods,chemicalsandreagents,measurements,humanfactors,environmentalissues(e.g.,laboratorytempera-ture,relativehumidity,andlight)[26,27].

Havingdefinedtheriskfactors,theycanberankedandprioritizedusingdedicatedapproaches{e.g.,FailureModeandEffectAnalysis(FMEA)[27–29]}.Thehighnoiseriskfactors(e.g.,analysts,equipment,daysofanalysis,bat-chesofreagentorofmaterials,andsamplebatches)cansubsequentlybeevaluatedexperimentallyusingMea-surementSystemAnalysisapproaches[30–32]tostudytheirimpactontherepeatabilityandthereproducibilityofthemethod,andeventuallycorrectivemeasuresmaybeimplementedtoreducetheirimpact.

High-riskinstrumentalparameterscanalsobeassessedexperimentallyusingstatisticalDesignofExperiments(DoE)methodology.Theseparametersarethecriticalprocessparameters(CPPs).FromtheDoEresultsandtheirinter-pretation,theDSoftheanalyticalmethodwillbeobtained.Weprovidefurtherinformationconcerningthecon-ceptofDSforanalyticalmethodsintheremainingsec-tionsofthisarticle,asitisitscoreaim.Formalanalyticalmethodvalidationisthenneeded[19,33-35].

Nonetheless,thedevelopmentofQbDanalyticalmeth-odsdoesnotendwiththeDS.Acontrolstrategyofthemethodhastobeimplementedtoassurethatthemethodwillperformasintendedonaroutinebasis.Herealso,elementsfromtheMSAand/orfromtheDScanbeusedtoselectresponsesthathavetobemonitoredateachana-lyticalrun.Theseresponsesthatwillbeimplementedinthecontrolstrategyareknownassystem-suitabilitytestsorvaliditytests.Theycanbethedefinitionofaminimum-

Trends

resolutionvaluebetweenacriticalpair,theacceptablevaluefortailingpeaks,themaximumacceptablevalueexpressedinRSDfortherepeatedanalysisofastandardsolution,theminimumvalueofthedeterminationcoeffi-cient(R2)ofastandardcurve,andsoon.WerecommendreadingthefollowingdocumentsasexamplesofhowtoobtainsuchinformationfromtheapplicationoftheDoEmethodologyandtheresultinganalyticalDS[36,37].AnothermethodologythatcanbeimplementedasacontrolstrategyforanalyticalmethodscontrolchartssuchasShewhartX

󰀂istousestatistical

ÀRones[32].Outofcontrolmethodscanbedetectedefficientlyandcorrectiveactionsrealizedbyfollowingthedailyperformanceofanalyticalmethodsonsuchcharts.

3.WhatisDesignSpaceofanalyticalmethodsAsstatedabove,themaininterestofthisworkistofocusontheconceptofDSappliedtoanalyticalmethods.InICHpharmaceutical-developmentguidelineQ8[3],theDSisdefinedas‘‘themultidimensionalcombinationandinteractionofinputvariables(e.g.,materialattributes)andprocessparametersthathavebeendemonstratedtoprovideassuranceofquality’’.Therefore,themultidimensionalcombinationandinteractionofinputvariablecorre-spondstoasubspace,so-calledtheDS,whereassuranceofqualityhasbeenproved.TheDSisnecessarilyencompassedwithintheexperimentaldomain,whichisthemultidimensionalspaceformedbythefactorrangesusedduringmethoddevelopment.ThemainconceptlyingbehindtheICHQ8definitionofDSisassuranceofquality(alsoknownasquality-riskmanagement).Thisdocumentalsostatesthat‘‘Workingwithinthedesignspaceisnotconsideredasachange’’.

Intheframeworkofmethoddevelopment,DScanbeconsideredasazoneoftheoreticalrobustnessasnodrasticchangesinthelevelsoftheCQAsofthemethodshouldbeobserved.Hence,todefineananalyticalDS,awiselyse-lectednumberoffactors,alsocalledcriticalprocessparameter(CPP)-operatingfactors(e.g.,gradienttimeinchromatography,andconcentrationofreagentsinimmunoassays)thatimpactontheanalyticaltechniqueunderdevelopmenthavetobestudiedsimultaneously.Usually,theCPPsareobtainedfromariskanalysisandaprioritizationstrategy,asexplainedinSection2.ThejuxtapositionofunivariatestudiesoftheinvolvedfactorscannotdetermineananalyticalDSproperly,aspotentialinteractionsofthefactorsinvolvedcannotbestudied.TheseinteractionsmayresultinsynergicorantagonisticeffectsontheresponsesmeasuredandthereforemodifythedelimitationoftheDS.

TheanalyticalDSisfinallyamultivariatedomainofinputfactorsensuringthatcriticallychosenresponsesareincludedwithinpredefinedlimitswithanacceptablelevelofprobability.Theanalyticalmethodisthereforenolongerdefinedbyasinglepointinthespaceofitsoperating

http://www.elsevier.com/locate/trac

159

Trendsparameters(e.g.,onevalueofwavelength,onevalueofproportionoforganicmodifier,oronevalueofpHofthemobilephase).TheanalyticalmethodisidentifiedbyarangeofoperatingconditionsthataredefinedbytheanalyticalDS.Severalauthorshaveproposedtocallana-lyticalDSthe‘‘MethodOperableDesignRegion’’(MODR;[20–23])inordertodistinguishitfromtheprocessDS.Thisname,MODR,clearlystatesthattheanalyticalpro-cedureisdefinedasamultivariaterangeofvaluesofoperatingparameterswheretheanalyticalmethodpro-videsqualityoutputswithadequateprobability.4.WhyDesignSpaceforanalyticalmethods?ThekeymeaningofQbDandhenceofanalyticalDSistoincreasetheunderstandingoftheanalyticalproceduresthemselvesandtounderstandbettertherelationshipbetweentheanalyticalproceduresandthecapabilityoftheprocessthatincludesthem[38].TheanalyticalDS,asdefinedintheICHQ8document,allowstheinclusionofthemeasurementuncertaintytoassesswhethertheanalyticalprocedureswillprovideassuranceofquality.TheDSobtainedforananalyticalprocedurewillensurethatitwillbeausefulanalyticalmethod,allowinguserstotakeadequatedecisionswiththeresultsgeneratedfromit.TheexerciseofdefiningaDSforanalyticalmethodsallowsuserstodeterminethecriticalanalyticalmethodparameters(correspondingtotheCPPsinprocessliterature)thatloadheavyweightsontheCQAsoftheanalyticalmethods.Controloverthemostimportantfactorscanhencebejudiciouslyimplemented.TherangesoverwhichthesemethodparameterscanbevariedareknownattheendofthedefinitionoftheanalyticalDS.ThisimpliesthattheDSofananalyticalmethodisameasureofitsrobustness.Inaddition,thecontrolstrat-egyoftheanalyticalprocedurecanbeimplementedbyselectingsystem-suitabilityteststhatarehighlycorre-latedtotheCQAsoftheanalyticalprocedure[20–22,37].AsmovingwithintheDSisnotconsideredchange,moreflexibilityfortheanalyticalmethodsduringitsroutineapplicationispossible.HencechangecontrolswillonlyberequiredwhensteppingoutsidetheDSlimits.Theparticularcaseofmethodtransferfromlaboratoriestolaboratoriesiseased[39].Thisispossiblesinceadap-tationoftheanalyticalprocedurebeingtransferredcanbeperformedwithinitsDSatthereceivingsite.

Finally,themainreasontodeterminetheDSofananalyticalprocedureisthatitprovidesinformationonhowoftentheanalyticalprocedurewillmeetitsrequirementinordertoprovidereliable,usefuldata.5.HowtodefinetheDesignSpaceofanalyticalmethods

InordertodefinetheDSofanalyticalmethods,severalstepshavetobeperformed.Thestartingpointistogather160

http://www.elsevier.com/locate/trac

TrendsinAnalyticalChemistry,Vol.42,2013

andtoreviewallhistoricalinformationavailableontheanalyticalmethodunderdevelopment,previouslydevel-opedmethodsthatarecloselyrelated,andtheliteratureandscientificinformationavailableonthesubject.5.1.CriticalqualityattributesandmodeledresponsesThefirststepistodefinetheCQAsoftheanalyticalmethodthathavetobeincludedintotheATP.TheseCQAsaretheresponsesthataremeasuredtojudgethequalityofthedevelopedanalyticalmethods.CQAsaredefinedas‘‘aphysical,chemical,biologicalormicrobiologicalpropertyorcharacteristicthatshouldbewithinanappropriatelimit,range,ordistributiontoensurethedesiredproductquality’’[3].Forseparativeanalyticalmethods(e.g.,chromatography),theCQAscanberelatedtothemethodselectivity(e.g.,theresolution(RS)criteria).AdditionalCQAscanbetheruntimeoftheanalysis,theprecisionoftheanalyticalmethod,thelowerlimitofquantificationorthedosingrangeoftheanalyticalmethod.SometimestheseCQAscanbedirectlymodeledthroughamultivar-iate(non-)linearmodel.Howeverinsomesituations,themodeledresponsesmaydifferentfromtheCQAs.TheCQAsareobtainedafterthemodelingoftheseprimaryresponses.

Forchromatographicmethods,theusualkeyCQAisresolutionofthecriticalpair.However,resolutionde-pendsupontheretentionfactorofthetwochromato-graphicpeaksinvolved,soseveralauthors[40–43]haveproposedtomodeltheretentionfactorsinsteadoftheresolution.Theresolutioncansubsequentlybecom-putedfromthesemodeledresponses.Similarly,severalcommercialsoftwarepackagesusethesolvophobicthe-ory[44,45]orthelinearsolvent-strengththeory[46,47]tomodeltheretentionfactorsandthenderivetheoptimalresolution,dependingonseveralfactors.5.2.Experimentalfactors,rangesandlevels

ToobtaintheDSofanalyticalmethods,thechoiceoftheexperimentalfactorsandtheirrespectiverangeispri-mordial.Fromthewholeexperimentaldesignregion,thefactorsandtherangesthatwillaffecttheresponsesmosthavetobechosen[48].Onthisdomain,sometimescalledtheknowledgespace,formaldesignsofexperi-mentswillbeperformed.Thisinvestigatedknowledgespaceisamultidimensionalspacethatneedstobelargeenoughtocreateresponsevariations.ThesevariationsshouldallowuserstoreachtheminimumrequirementsoftheCQAs.AnexampleforchromatographicmethodsisRS>1.5.Thenumberoffactorlevelsdeterminesthepolynomialdegreeofthemulti-linearequationusedtomodeltheresponses.Forexample,iftwolevelsareselected,themodelingequationcanonlybelinear.Generally,ifnopriorinformationabouttheresponsevariationisknown,preliminaryexperimentsshouldbecarriedouttoestimatetherangeandthemagnitudeofvariationofeachfactor.

TrendsinAnalyticalChemistry,Vol.42,2013Trends

5.3.DesignofExperiments(DoEs)andresponsemodelingThenaı¨vewaytoperformexperimentstogainknowl-edgeaboutaprocessortooptimizeitistoperformone-factor-at-a-time(OFAT)designs.OFATwillgenerallyrequireahighernumberofexperimentstoestimatethefactorseffectwithgoodprecisionandtheirinteractionscanrarelybeestimated.DoEsprovideaneffective,efficientapproachtoeval-uatesimultaneouslytheeffectsoffactorsandtheirinteractions,andtomodelandtopredicttherelationshipbetweenthesefactorsandtheCQAsorresponses[49–51].TheselectedDoEneedstohavegoodstatisticalproperties(e.g.,orthogonalityand/orrotatability),andshouldmaintainthenumberofexperimentsaslowaspossible.Thepossibilityofexpandingthedesignisalsoaninterestingpropertyinordertoextendtherangeofvaluesofthefactors,addnewfactors,orincreasethemodelcomplexitywhenstartingtoacquireknowledgeaboutthemethodunderdevelopmentandoptimization.Itshouldalsoallowestimationoftheexperimentalerrorandassessmentofthevalidityofthemodeltested.

DoEcanbesplitupintotwomaincategories:screen-ingdesignsandresponse-surfacedesigns

5.3.1.Screeningdesigns.Screeningdesignsestimatetheeffectsoffactorsonselectedresponses.Whentoomanyfactors(fourormore)seemtoaffecttheresponsesandhavebeenrevealedbytheFMEAprioritization,thesedesignscanbeusedtoselectthosehavingthelargesteffectsontheresponses.Theremainingsignificantfac-torswillbestudiedinasubsequentDoE[e.g.,methodoptimization(seebelow)].Inthescreeningcategoryofdesigns,wellknownarethePlackettandBurmandesignsthatstudyfactorsattwolevels.Inliquidchromatography(LC),PlackettandBurmandesignsarealsousedtoestimatetherobustnessofanoptimalseparation[48,52,53].Figure2.Meanresponsesurfaceforrun-timewithrespecttopHand%acetonitrileobtainedfromthecentralcompositedesignappliedtothehypotheticalanalyticalmethodexample.Thedesiredmaximumrun-timecannotexceed20min.Hatchedregion:experimentaldomainwheremaximumrun-timeisatmost20min.http://www.elsevier.com/locate/trac

161

TrendsOthertypesofscreeningdesignsaretwo-levelfrac-tionalfactorialones,whichgenerallydonotallowunderstandingofaprocessunderinvestigationifitmayincludeinteractionsandhigherordereffectterms.Howevertheyareveryusefulinselectingthemostimportantfactorsthatinfluencetheselectedresponsesoftheanalyticalmethodunderinvestigation.

5.3.2.Response-surfacedesigns.ThesecondcategoryofDoEcorrespondstodesignsusedtopredictandtooptimizetheresponses[54,55].TheseDoEsarethree-level,fullfac-torialdesigns,centralcompositedesigns,andBox-Benkhen[56]andDoehlertdesigns[57].D-optimaldesignscanalsobeselectedinordertoanswerparticularrequirements(e.g.,constraintsonthelevelsoffactors,orspecificmodels)[58].Thesedesignsareaimedatunderstandingtheprocessunderinvestigation.Itinvolvesunderstandingtherela-tionshipbetweenthefactorstoassessthebehavioroftheresponse,andtheeffectsontheresponse.Thesedesignsareusedtofindthecombinationoffactorsthatpredicttheoptimalresponsewithgoodprecision.

Morethantwolevelsofeachfactorareusuallyre-quiredinordertofitquadraticorhigherorderterms{e.g.,whenpHisafactorinLC,itmayberequiredtostudypHuptothethird-orderterm:pH+pH2+pH3[59]}.Response-surfacedesignsarekeytoolstodefinetheDSofanalyticalmethods.Theystudyalargeexperimentaldomain,understandingthebehavioroftheresponsesandtheCQAswithrespecttothestudiedfactors,andtheyprovideamodeltopredictthevalueoftheCQAswithintherangeoftheselevelsoffactors.

5.3.3.Responsemodeling.Themodelingoftheresponsescanberealizedintwomainways.Thefirstinvolvesatheoreticalormechanisticmodelthatconnectssomeofthefactorstotheresponses{e.g.,realizedwithsoftwareavailabletooptimizechromatographicmethodsusingthesolvophobictheoryorlinearsolvent-strengththeory[44–47]}.

Table1.CentralcompositedesignusedasexamplefordefiningtheDesignSpaceExperimentpHAcetonitrile%Run-time(min.)10

0

20.152À0.7071068À0.707106815.9830020.6840À114.6850019.6260120.9470020.0381

0

22.1090.70710678À0.707106819.0310À0.70710680.7071067818.37110.707106780.7071067821.60120018.6713

À1

0

16.29

162

http://www.elsevier.com/locate/trac

TrendsinAnalyticalChemistry,Vol.42,2013

However,mostofthetime,therearenotheoreticalmodelsthatincludeallthefactorsthatmayinfluencetheresponsesandtheanalyticalCQAs.Inthiscase,empir-icalmodelscanbefittedonthedataobtainedtolinktheresponsesandthefactorsstudied.Thisisusuallyper-formedbyfittingmultiplelinearequationsofadequatepolynomialdegree,relatedtothenumberoffactorsse-lected.Insomesituations,itmayalsoberequiredtofitnon-linearmodels.

5.4.AremeanresponsesurfacestheDesignSpace?Whentheexperimentshavebeenperformedusingaresponse-surfacedesign,theresultingmodelisgenerallyillustratedandinterpretedthroughameanresponsesurfaceorcontourplot,asshowninFig.2.Themeanresponsesurfacedepictsthebehavioroftheresponsemeasuredwithrespecttotherangeoffactorsassessedandtothemodelfitted.Fig.2showsthemeanresponsesurfaceforthemaximumrun-timeofahypotheticalchromatographicmethodusedtoillustratefurtherkeyissuesconcerninganalyticalDS.Forthisexample,thetruemodelthatlinkstheresponsemodeledrun-time(y)tothefactorsproportionofacetonitrileinthemobilephase(ACN)andpHoftheaqueousbuffer(pH)issup-posedknown:

y¼b0þb1ÂACNþb2ÂpHþb11ÂACN2þb22ÂpH2

ð1Þ

0

B

b0¼20

1

with

B¼BB

b1¼2CBC

BCB

b2¼3C@bC

11¼À1CbA22¼À1

Torepresenttherealityofmethodoptimization,arotatablecentralcompositedesignwasdefinedinvolving13experiments,asshowninTable1.Valuesofmaxi-mumrun-timewerethensampledfromthefollowingnormaldistribution:

N(y,r),withr=1attheexperimentalconditionsproposedbytheDoEinTable1.

Theresponse-surfacemodeldefinedinEquation(2)isthenfittedtothedataobtainedandthecorrespondingresponsesurfaceisbuilt,asillustratedinFig.2:^y

¼b0þb1ÂACNþb2ÂpHþb12ÂACNÂpHþb11ÂACN2þb22ÂpH2

ð2Þ

ItisgenerallythoughtthattheDScanbeobtainedbysearchingtherangeofvaluesofthefactorsthatshowthattheresponse(orCQA)meetsapre-definedcriteria(e.g.,Rs>1.5orruntime<20min).ThehatchedregionofFig.2showsthevaluesofthetwofactorshavingaruntimelessthan20min.Itwouldbetemptingtodefinethismulti-variateregionastheDSforthishypotheticalexample.

TrendsinAnalyticalChemistry,Vol.42,2013TrendsFigure3.Probabilitymapshowingthetrueprobabilityofhavingamaximumrun-timeofatmost20minappliedtothehypotheticalanalyticalmethodexample.Hatchedregion:experimentaldomainwherethetrueprobabilitytohavearun-timeofmaximum20minisatleast90%.However,themeanresponsesurfacesdonotgiveanyguaranteethattheresponses(orCQAs)willattainthedefinedcriteriawithhighprobability[60].Indeed,theyonlyrepresentaregionwheretheresponseisobservedonaverage.Inotherwords,thereisonechanceintwothattheresponsewillbeonthismeanresponsesurface.Fig.3showsthetrueprobabilitytomeetthecriteriarequiredfortheCQAmaximumrun-time<20min.Thistrueprobabilitycanbeobtainedonlybecausethetrueunderlyingmodelisknownhere.AscanbeseenonFig.3,theprobabilitytomeetthespecificationisonlyabout50%attheedgeofthesupposedDS,wherethemaximumrun-timeis<20min.Itmeansthat,whenobservingthemeanresponsesurfacecorrespondingto20minofrun-time,thereiseffectivelyonechanceintwotoreachtheobjective.ItcanbeseenfromFig.3thatthissupposedDSdoesnotgiveaguaranteethatthespecifi-cationisreached.Indeed,forthecontourcorrespondingto20minofruntime,manyconditionshavealessthan50%chancetoreachthismaximumrun-time.ThisisfarfromtheDSrequirementoftheICHQ8thatstatesthatDSisaregionwhereprocessparameters‘‘havebeendem-onstratedtoprovideassuranceofquality’’.

Bycontrast,thehatchedregionofFig.3showsthevaluesofthefactorspHandACNthatensurethatthetrueprobabilityofhavingamaximumrun-timeof20minisatleast90%,sousingmeanresponsesurfacesalonedoesnotprovideanyassuranceofquality.

Inaddition,whenseveralCQAsaremeasuredsimul-taneously,adesirabilityfunctionoroverlapinmeanresponsesurfacesisgenerallyusedtofindtheoptimalconditionstoreachsimultaneouslythepredefinedper-formancecriterionrequiredfortheseresponses(orCQAs)[61,62].Hereagain,usingsuchaclassicalmethodologydoesnotgiveanyguaranteeabouttheprobabilityofachievingthemjointlyatthemeanoptimalconditions[63].Forexample,whenusingtwooverlappingmeanresponsesurfacesthathaveeachonly50%probabilitytoattainthedesiredresponse(orCQA)level,theprobabilitytoreachsimultaneouslytherequiredlevelsofthetworesponses(orCQAs)isp=0.5·0.5=0.25=25sup-posingthattheyareindependent!Inthissituation,the

163

http://www.elsevier.com/locate/trac

TrendsTrendsinAnalyticalChemistry,Vol.42,2013Figure4.Probabilitymapgivingtheestimatedprobabilityofhavingarun-timeofatmost20minobtainedfromtheexperimentsdefinedbythecentralcompositedesignappliedtothehypotheticalanalyticalmethodexample.Hatchedregion:theDesignSpaceshowingthattheprobabilityofhavingarun-timeofmaximum20minisatleast90%.levelofquality,p,decreasesaccordingtothepowerofp,thenumberofresponsessimultaneouslystudied(i.e.p=0.5p).Similarpitfallsarepresentwhenusingmeanpredictedglobaldesirabilityfunctions,whichignorethecorrelationbetweenthevariousresponses,andneglectthepredictionuncertaintyandtheuncertaintyofmodel-parameterestimates[].

5.5.AreprobabilitymapstheDesignSpace?

Asthepreviousapproachesrelatedtomeanresponsesurfacesdonotprovideanyguaranteethattheanalyticalmethodcanmeetthespecificationswithre-specttotheinvestigatedCQAswithhighprobability,otherapproachesshouldbeimplemented.Theseap-proachesshouldtakeintoaccountthemodel-parameteruncertaintyandshouldprovideinformationabouthowoftenthespecificationswillbemet.Thisisessential,sinceICHQ8clearlyrequiresitforalevelofassuranceguaranteeingthatthespecificationswillbemet.Severaloptionscanbeimplementedtoreachthisrequirement.Bayesianmodeling[],Monte-Carlosimulations[65]orbootstrappingtechniques[66]canbeperformedtoincludeuncertaintyoftheparametersofthemodelsandtoestimatetheprobabilityofmeetingthespecificationsimposedontheCQAs.

Fig.4showstheDSobtainedusingaBayesianapproachasproposedbyPetersonetal.[63]orLebrunetal.[7].AscanbeseenbythehatchedregionofFig.4,ifitisrequiredthatthespecificationovertheCQAshouldbemetwithaproba-bilityofatleast90%,theDSisfarlessthantheoneobtainedwiththemeanresponsesurface.Thismeansthespecifica-tion‘‘run-timeofatmost20minutes’’willbemetin90%ofruns.Thismeasureoftheassuranceofqualityistheprob-abilityassociatedwiththeDS.WeshouldalsonotethattheDSobtainedonFig.4isveryclosetothetrueprobabilitymapofthishypotheticalexample,asshowninFig.3.

Hence,whendefiningananalyticalDS,themethod-ologythatisusedshouldtakeintoaccounttheuncer-

1

http://www.elsevier.com/locate/trac

Table2.DetailsoftheanalyticalDesignSpacespublishedinthescientificliteratureAnalyticalmethodAnalytes

Matrix

ModelingapproachDesignSpacetypeRef.UHPLC-UVImpuritiesanddegradationproductTablets

ChromatographictheoryMeanresponsesurface[70]ofethinylestradiol

UHPLC-UV

Dienogest,estradiol,ethinylestradiol,CleaningvalidationChromatographictheory

Meanresponsesurface

[70]

finasterid,gestodene,levonorgestrel,samples

norethisteroneacetate

UHPLC-UV1-naphtol,duloxetine,related

SpikedandstressedChromatographictheoryMeanresponsesurface[70]impuritiesanddegradationproductscapsulesamplesUHPLC-UVBicalutamideandrelatedimpuritiesTabletsChromatographictheoryMeanresponsesurface[70]HPLC-UV

Paracetamol,4-hydroxy-3-methoxyna

EmpiricallinearmodelandMeanresponsesurface

[71]

benzylalcohol,DL-mandelicacid,Chromatographictheory

phthalicacid,p-hydroxyphenylaceticacid,vanillicacid,m-hydrophenylaceticacid,isovanillicacid,benzylalcoholandimpuritiesHPLC-UVPhthalicacid,vanillicacid,

Syntheticmixture

EmpiricallinearmodelandMeanresponsesurface[72]

isovanillicacid,aspirin,furosemide,Chromatographictheory

doxepin,terbinafin,atorvastatin,clopidogrelandrelatedimpuritiesHPLC-UVPhthalicacid,vanillicacid,

SyntheticmixtureChromatographictheoryMeanresponsesurface[73]

isovanillicacid,anthranilicacid,vanillin,syringaldehyde,ferulicacid,orthovanillin,benzoicacid

UHPLC-UV2ActivePharmaceuticalIngredientsEyedropsolutionChromatographictheoryMeanresponsesurface[74]and9impurities

HPLC-UV19antimalarialdrugs

SyntheticmixtureEmpiricallinearmodelMonte-CarloProbabilitymap[59]HPLC-UVDiflunisal,Granisetron,Nifedipine,SyntheticmixtureEmpiricallinearmodelMonte-CarloProbabilitymap[75]Phenytoine,SulfinpyrazoneHPLC-UV

D9-tetrahydrocannabinol,D9-DifferentCannabisEmpiricallinearmodel

Monte-CarloProbabilitymap

[67]

tetrahydrocannabinolicacidA,products

cannabidiolicacid,cannabigerolicacid,cannabidiol,cannabigerol,cannabinol,D8-http://www.elsevier.com/locate/tractetrahydrocannabinolHPLC-UVTertiaryalkaloidsStrychnos

EmpiricallinearmodelMonte-CarloProbabilitymap[68]usambarensisleavesHPLC-UV

Aprophinealkaloids

Leavesof

Empiricallinearmodel

Monte-CarloProbabilitymap

[69]

SpirospermumpenduliflorumThouars

HPLC-UVSulfide,sulfone,sulindac,E-sulindacDrugsubstanceEmpiricallinearmodelMonte-CarloProbabilitymap[76]HPLC-UV9unknowncompoundsDrugproductEmpiricallinearmodelMonte-CarloProbabilitymap[77]HPLC

na

na

EmpiricallinearmodelBayesianProbabilitymap[,78]

na:nodataavailable.

165TrendsinAnalyticalChemistry,Vol.42,2013TrendsTrendstaintyofthemodelparameters,thecorrelationoftheresponsesstudiedandameasureoftheassuranceofattainingthequalitytarget.

6.DesignSpaceofanalyticalmethods

ThereareseveralexamplesofDSofanalyticalmethodsintheliterature,ascanbeseeninTable2.Alltheexamplesinvolvedliquidchromatographicmethods.MostareconventionalHPLCandfourexamplesinvolveUHPLC.Thedomainsofapplicationarenonethelessnotlimitedtothepharmaceuticalindustry.

Ofthe16examplescollected,three[67–69]aimtodefinetheDSofanalyticalmethodsappliedtoanalysisinplantmaterials.TheDSswereobtainedbyusingthemeanresponse-surfacemethodologyineightcases[70–74],hencefailingtoprovidethedemonstrationof‘‘assuranceofquality’’requiredintheICHQ8definitionofDS.SevenothercasesusedMonte-Carlosimulations[59,75–77],andonlyoneDSappliedaBayesianap-proach[,78].

Asalltheexamplesreportedinvolvedchromato-graphicmethods,theCQAsmeasuredrelatedtotheabilityofthemethodstoseparatethevariouscomponentsofthesamplesanalyzed.Theresolutionwasusedmost[,70–74,78],whileanotheronereportedwassepara-tion(thedifferencebetweenthetimeofthebeginningofthesecondpeakminusthetimeoftheendofthepreviouspeak)[59,67–69,75–77].OtherCQAsthatwereusedtodeterminetheDSweretotalruntime[59,,78],signal-to-noiseratioandtailingfactor[,78].TheselastexamplesdefinedaDSthatcouldsimultaneouslycomplywithspecificationsassignedtoeachindividualCQA(e.g.,aresolutionofthecriticalpeakpairofatleast1.5andamaximumruntimeof15min).

AlltheseexamplesshowedthataDScanbebuiltforanalyticalmethods.Theyalsoshowthetwomainvi-sionsaboutDS:

(1)pseudo-DSbasedonmeanresponsesurfacethatonly

givesinformationonthemeanpredictedquality;and,(2)DSthataccountsforuncertaintyandcorrelation

andprovidesalevelofassuranceofquality,asdefinedbyICHQ8document.

ThefactthatonlyDSsconcerningchromatographicmethodswerefoundintheliteraturedoesnotimplythattheDSisrestrictedtosuchtechniques.DScanbeobtainedforimmunoassaysorotherbio-assays(e.g.,PCR).However,nonewasreportedinthescientificliterature.7.Conclusion

TheDSrequirementoftheICHQ8statesthattheDSisaregionwhereprocessparameters‘‘havebeendemon-stratedtoprovideassuranceofquality’’.AnadditionalopportunityfortheDSforanalyticalproceduresisthepossibilitytomoveinsidetheDSwithouttheneedto

166

http://www.elsevier.com/locate/trac

TrendsinAnalyticalChemistry,Vol.42,2013

initiatearegulatorypost-approvalchangeprocess.ItisthenofcoreimportancetodemonstratethatthelevelofqualityrequiredfortheCQAscanbemetwithhighprobability.Methodologiestoachievethisaimareavailableandcanalleviatethefalseimpressionthatriskhasbeenmitigatedbyusingmeanresponsesurfacesorsimilarapproaches.Indeed,assuranceofqualityrequiresametrictomeasurehowoftenqualitywillbeachieved.Evidently,obtainingtheDSofanalyticalmethodsisnottheendofthestory.Inparticular,acontrolstrategyoftheanalyticalmethodwillhavetobedefinedinordertoassureandtomonitoritsdailyperformance.Themeth-odologyimplementedtodefinetheanalyticalDSwillalsohelpindefininganadequatecontrolstrategy.Finally,theachievementofaDSismeaninglessinitselfiftheDSisnotcompletelyincludedinaqualitysystemthathasaglobalrisk-managementplan.

Acknowledgments

Theauthorsareverygratefultotheanonymousreviewersforprovidingimportantcommentsthatledtosignificantimprovementsofthisarticle.AresearchgrantfromtheBelgiumNationalFundforScientificResearch(FRS-FNRS)toE.Rozetisgratefullyacknowledged.References

[1]USFoodandDrugAdministration(FDA),DepartmentofHealth

andHumanServices,PharmaceuticalQualityforthe21stCenturyARisk-BasedApproachProgressReport,May2007(http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm128080.html).

[2]USFoodandDrugAdministration(FDA),Guidanceforindustry

PAT-Aframeworkforinnovativepharmaceuticalmanufacturingandqualityassurance,FDA,Washington,DC,USA,2004.

[3]InternationalConferenceonHarmonization(ICH)ofTechnical

RequirementsforRegistrationofPharmaceuticalsforHumanUse,TopicQ8(R2):PharmaceuticalDevelopment,ICH,Geneva,Switzerland,2009.

[4]InternationalConferenceonHarmonization(ICH)ofTechnical

RequirementsforRegistrationofPharmaceuticalsforHumanUse,TopicQ9:QualityRiskManagement,ICH,Geneva,Switzerland,2005.

[5]InternationalConferenceonHarmonization(ICH)ofTechnical

RequirementsforRegistrationofPharmaceuticalsforHumanUse,TopicQ10:PharmaceuticalQualitySystem,ICH,Geneva,Swit-zerland,2008.

[6]R.A.Lionberger,S.L.Lee,L.Lee,A.Raw,L.X.Yu,AAPSJ.10

(2008)268.

[7]P.Lebrun,F.Krier,J.Mantanus,H.Grohganz,M.Yang,E.Rozet,

B.Boulanger,B.Evrard,J.Rantanen,Ph.Hubert,Eur.J.Pharm.Biopharm.80(2012)226.

[8]H.Wu,M.White,M.A.Khan,Int.J.Pharm.405(2011)63.[9]T.R.M.DeBeer,M.Wiggenhorn,A.Hawe,J.C.Kasper,A.

Almeida,T.Quinten,W.Friess,G.Winter,C.Vervaet,J.P.Remond,Talanta83(2011)1623.

[10]D.amEnde,K.S.Bronk,J.Mustakis,G.OÕConnor,C.L.Santa

Maria,R.Nosal,T.J.N.Watson,J.Pharm.Innov.2(2007)71.[11]J.Harms,X.Wang,T.Kim,X.Yang,A.S.Rathore,Biotech.Progr.

24(24)(2008)655.

[12]A.Baldinger,L.Clerdent,J.Rantanen,M.Yang,H.Grohganz,

Pharm.Dev.Technol.17(2012)3.

TrendsinAnalyticalChemistry,Vol.42,2013

[13]S.GarciaMunoz,S.Dolph,H.W.WardII,Comput.Chem.Eng.34

(2010)1098.

[14]J.Huang,G.Kaul,C.Cai,R.Chatlapalli,P.HernandezAbad,K.

Ghosh,A.Nagi,Int.J.Pharm.382(2009)23.

[15]S.Adam,D.Suzzi,C.Radeke,J.G.Khinast,Eur.J.Pharm.Sci.42

(2011)106.

[16]T.Lipsanen,O.Antikainen,H.Raikkonen,S.Airaksinen,J.

Yliruusi,Int.J.Pharm.345(2007)101.

[17]S.Verma,Y.Lan,R.Gokhale,D.J.Burgess,Int.J.Pharm.377

(2009)185.

[18]J.Huang,C.Goolcharran,K.Ghosh,Eur.J.Pharm.Biopharm.78

(2011)141.

[19]F.G.Vogt,A.S.Kord,J.Pharm.Sci.100(2011)797.

[20]M.Schweitzer,M.Pohl,M.Hanna-Brown,P.Nethercote,P.

Borman,G.Hansen,K.Smith,J.Larew,Pharm.Tech.34(2010)52.

[21]J.Ermer,Eur.Pharm.Rev.16(2011)16.

[22]P.Nethercote,P.Borman,T.Bennett,G.Martin,P.McGregor,

Pharm.Manufact.April(2010)37.

[23]P.Borman,J.Roberts,C.Jones,M.Hanna-Brown,R.Szucs,S.

Bale,Sep.Sci.2(2010)1.

[24]E.Rozet,E.Ziemons,R.D.Marini,B.Boulanger,Ph.Hubert,Anal.

Chem.84(2012)106.

[25]K.Ishikawa,WhatisTotalQualityControl?TheJapaneseWay,

Prentice-Hall,EnglewoodCliffs,NJ,USA,1985,pp.63–.

[26]L.Zhou,J.Socha,F.G.Vogt,S.Chen,A.S.Kord,Am.Pharm.Rev.

13(2010)74.

[27]P.J.Borman,P.Nethercote,M.J.Chatfield,D.Thompson,K.

Truman,Pharm.Technol.31(2007)142.

[28]D.Stamatis,FailureModesandEffectsAnalysis,SecondEdition,

ASQQualityPress,Milwaukee,WI,USA,FMEAfromTheorytoExecution,2003.

[29]J.F.vanLeeuwen,M.J.Nauta,D.deKaste,Y.M.C.F.Odekerken-Rombouts,M.T.Oldenhof,M.J.Vredenbregt,D.M.Barends,J.Pharm.Biomed.Anal.50(2009)1085.

[30]P.J.Borman,M.J.Chatfield,I.Damjanov,P.Jackson,Anal.Chim.

Acta703(2011)101.

[31]J.Mantanus,E.Ziemons,P.Lebrun,E.Rozet,R.Klinkenberg,B.

Streel,B.Evrard,P.Hubert,Talanta80(2010)1750.

[32]D.C.Montgomery,IntroductiontoStatisticalQualityControl,

SixthEdition.,Wiley,Hoboken,NJ,USA,2009p.52.

[33]InternationalConferenceonHarmonization(ICH)ofTechnical

RequirementsforregistrationofPharmaceuticalsforHumanUse,TopicQ2(R1):ValidationofAnalyticalProcedures:TextandMethodology,ICH,Geneva,Switzerland,2005.

[34]A.Bouabidi,E.Rozet,M.Fillet,E.Ziemons,E.Chapuzet,B.

Mertens,R.Klinkenberg,P.Hubert,J.Chromatogr.,A1217(2010)3180.

[35]E.Rozet,R.D.Marini,E.Ziemons,B.Boulanger,P.Hubert,J.

Pharm.Biomed.Anal.55(2011)848.

[36]Y.VanderHeyden,M.Jimidar,E.Hund,N.Niemeijer,R.Peeters,

J.Smeyers-Verbeke,D.L.Massart,J.Hoogmartens,J.Chromatogr.,A845(1999)145.

[37]J.J.Peterson,M.Yahyah,Stat.BiopharmRes.1(2009)441.[38]A.Bouabidi,E.Ziemons,R.Marini,C.Hubert,M.Talbi,A.

Bouklouze,H.Bourichi,M.ElKarbane,B.Boulanger,P.Hubert,E.Rozet,Anal.Chim.Acta714(2012)47.

[39]W.Dewe

´,B.Govaerts,B.Boulanger,E.Rozet,P.Chiap,P.Hubert,Chemom.Intell.Lab.Syst.85(2007)262.

[40]P.J.Schoenmakers,H.A.H.Billet,R.Tijssen,L.DeGaan,J.

Chromatogr.149(1978)519.

[41]L.R.Snyder,J.W.Dolan,J.R.Grant,J.Chromatogr.165(1979)3.[42]A.P.Schellinger,P.W.Carr,J.Chromatogr.,A1077(2005)110.[43]R.Cela,E.Y.Ordon˜ez,J.B.Quintana,R.Rodil,J.Chromatogr.,A

(2012)(DOI:10.1016/j.chroma.2012.07.081).

Trends

[44]C.Horva

´th,W.Melander,I.Molna´r,J.Chromatogr.125(1976)129.

[45]S.Heron,A.Tchapla,J.Chromatogr.,A556(1991)219.[46]L.R.Snyder,J.W.Dolan,Adv.Chromatogr.38(1998)115.[47]P.Jandera,Adv.Chromatogr.43(2004)1.

[48]Y.VanderHeyden,A.Nijhuis,J.Smeyers-Verbeke,B.G.M.

Vandeginste,D.L.Massart,J.Pharm.Biomed.Anal.24(2001)723.

[49]V.Czitrom,Am.Statist.53(1999)126.

[50]D.BrynnHibbert,J.Chromatogr.,B(2012)(DOI:10.1016/

j.jchromb.2012.01.020).

[51]T.Lundstedt,E.Seifert,L.Abramo,B.Thelin,A.Nystrom,J.

Pettersen,R.Bergman,Chemom.Intell.Lab.Syst.42(1998)3.[52]B.Dejaegher,Y.VanderHeyden,J.Chromatogr.,A1158(2007)

138.

[53]R.D.Marini,P.Hubert,E.Rozet,Y.Vander,Heyden,E.Ziemons,

B.Boulanger,A.Bouklouze,J.Crommen,J.Pharm.Biomed.Anal.44(2007)0.

[54]M.A.Bezerra,R.E.Santelli,E.P.Oliveira,L.S.Villar,L.A.Escaleira,

Talanta76(2008)965.

[55]S.L.C.Ferreira,R.E.Bruns,E.G.P.daSilva,W.N.L.dosSantos,

C.M.Quintella,J.M.David,J.B.deAndrade,M.C.Breitkreitz,I.C.S.FontesJardim,B.B.Neto,J.Chromatogr.,A1158(2007)2.[56]G.E.P.Box,D.W.Behnken,Technometrics2(1960)455.[57]D.H.Doehlert,Appl.Statist.19(1970)231.

[58]A.C.Atkinson,R.D.Tobias,J.Chromatogr.,A1177(2008)1.[59]B.Debrus,P.Lebrun,J.MbinzeKindenge,F.Lecomte,A.Ceccato,

G.Caliaro,J.MavarTayeyMbay,B.Boulanger,R.D.Marini,E.Rozet,P.Hubert,J.Chromatogr.,A1218(2011)5205.

[60]J.J.Peterson(http://www.pharmamanufacturing.com/articles/

2010/097.html).

[61]E.Harrington,Ind.Qual.Control21(1965)494.

[62]G.Derringer,R.Suich,J.Qual.Technol.12(1980)214.[63]J.J.Peterson,K.Lief,Stat.Biopharm.Res.2(2010)249.[]J.J.Peterson,J.Qual.Technol.36(2004)139.

[65]M.A.Herrador,A.G.Asuero,A.G.Gonzalez,Chemom.Intell.Lab.

Syst.79(2005)115.

[66]C.Davison,D.V.Hinkley,Bootstrapmethodsandtheirapplica-tion,CambridgeUniversityPress,Cambridge,UK,1997.

[67]B.DeBacker,B.Debrus,P.Lebrun,L.Theunis,N.Dubois,L.

Decock,A.Verstraete,P.Hubert,C.Charlier,J.Chromatogr.,B877(2009)4115.

[68]I.Nistor,M.Cao,B.Debrus,P.Lebrun,F.Lecomte,E.Rozet,L.

Angenot,M.Frederich,R.Oprean,P.Hubert,J.Pharm.Biomed.Anal.56(2011)30.

[69]M.H.Rafamantanan,B.Debrus,G.E.Raoelison,S.Uverg-Rats-imamang,E.Rozet,P.Hubert,J.Quetin-Leclercq,J.Pharm.Biomed.Anal.62(2012)23.

[70]S.Fekete,J.Fekete,I.Molna

´r,K.Ganzler,J.Chromatogr.,A1216(2009)7816.

[71]I.Molna

´r,H.-J.Rieger,K.E.Monks,J.Chromatogr.,A1217(2010)3193.

[72]K.E.Monks,H.-J.Rieger,I.Molna

´r,J.Pharm.Biomed.Anal.56(2011)874.

[73]I.Molnar,K.E.Monks,Chromatographia73(2011)S5.

[74]K.Monks,I.Molnar,H.-J.Rieger,B.Bogati,E.Szabo,J.

Chromatogr.,A1232(2012)218.

[75]P.Lebrun,B.Govaerts,B.Debrus,A.Ceccato,G.Caliaro,P.

Hubert,B.Boulanger,Chemom.Intell.Lab.Syst.91(2008)4.[76]F.Krier,M.Brion,B.Debrus,P.Lebrun,A.Driesen,E.Ziemons,B.

Evrard,P.Hubert,J.Pharm.Biomed.Anal.54(2011)694.

[77]B.Debrus,P.Lebrun,A.Ceccato,G.Caliaro,E.Rozet,I.Nistor,R.

Oprean,F.J.Rupe

´rez,C.Barbas,B.Boulanger,P.Hubert,Anal.Chim.Acta691(2011)33.

[78]R.Rajagopal,E.delCastillo,J.Oper.Res.Soc.58(2007)779.

http://www.elsevier.com/locate/trac

167

因篇幅问题不能全部显示,请点此查看更多更全内容