纯电动汽车
整车控制器VCU技术要求
目 录
1. 概述 ·························································································································· 5 2. 术语 ·························································································································· 5
3.1定义 ···································································································································· 5
3.2缩略语································································································································· 5
3. 开发流程 ·················································································································· 5
4.1VCU控制策略开发流程 ······································································································· 5 4.2VCU控制策略开发需求输入 ······························································································· 6 4.3VCU控制策略开发交付物 ··································································································· 6
4. VCU软件功能需求 ··································································································· 6 5. 上下电功能需求 ······································································································ 7
6.1功能概述····························································································································· 7 6.2功能实现描述 ····················································································································· 7
6.2.1上电功能逻辑图 ······································································································ 7 6.2.2上电功能需求 ·········································································································· 8 6.2.3下电功能逻辑图 ······································································································ 9 6.2.4下电功能需求 ········································································································ 10
6. 挡位管理功能需求 ································································································ 10
7.1功能概述··························································································································· 10 7.2功能实现描述 ··················································································································· 10
7.2.1功能逻辑图 ············································································································ 10 7.2.2功能需求 ················································································································ 11
7. 驾驶员需求扭矩计算功能需求 ············································································ 11
8.1功能概述··························································································································· 11 8.2功能实现描述 ··················································································································· 11
8.2.1功能逻辑图 ············································································································ 11 8.2.2功能需求 ················································································································ 12
8. 蠕行功能需求 ········································································································ 14
9.1功能概述··························································································································· 14 9.2功能实现描述 ··················································································································· 14
9.2.1功能逻辑图 ············································································································ 14 9.2.2功能需求 ················································································································ 14
9. 驱动扭矩控制功能需求 ························································································ 15
10.1功能概述························································································································· 15 10.2功能实现描述 ················································································································· 15
10.2.1功能逻辑图 ·········································································································· 15
10.2.2功能需求 ·············································································································· 15
10. 高压能量管理功能需求 ······················································································ 16
11.1功能概述························································································································· 16 11.2功能实现描述 ················································································································· 16
11.2.1功能逻辑图 ·········································································································· 16 11.2.2功能需求 ·············································································································· 16
11. 充电管理功能需求 ······························································································ 17
12.1功能概述························································································································· 17 12.2功能实现描述 ················································································································· 17
12.2.1充电上电功能逻辑图 ·························································································· 17 12.2.2充电上电功能需求 ······························································································ 18 12.2.3充电下电功能逻辑图 ·························································································· 18 12.2.4充电下电功能需求 ······························································································ 19
12. 滑行能量回收功能需求 ······················································································ 19
13.1功能概述························································································································· 19 13.2功能实现描述 ················································································································· 19
13.2.1功能逻辑图 ·········································································································· 19 13.2.2功能需求 ·············································································································· 20
13. 制动能量回收功能需求 ······················································································ 21
14.1功能概述························································································································· 21 14.2功能实现描述 ················································································································· 21
14.2.1功能逻辑图 ·········································································································· 21 14.2.2功能需求 ·············································································································· 21
14. 最高车速计算功能需求 ······················································································ 22
15.1功能概述························································································································· 22 15.2功能实现描述 ················································································································· 22
15.2.1功能逻辑图 ·········································································································· 22 15.2.2功能需求 ·············································································································· 22
15. 辅助控制功能需求 ······························································································ 23
16.1功能概述························································································································· 23 16.2功能实现描述 ················································································································· 23
16.2.1功能逻辑图 ·········································································································· 23 16.2.2功能需求 ·············································································································· 23
16. 故障诊断功能需求 ······························································································ 24
16.1功能概述························································································································· 24
16.2功能实现描述 ················································································································· 24
16.2.1功能逻辑图 ·········································································································· 24 16.2.2功能需求 ·············································································································· 24
1.概述
该技术要求书定义了整车控制策略的技术要求,仅作为纯电动汽车策略开发技术交流的依据,同时指导自主开发整车控制策略方案制定及实施。
2.术语
GB/T 2900.41;GB/T 19752,GB/T 24548和GB/T 30038界定的以下及下列术语与定义适用于本文件。 2.1定义
根据加速踏板位置,挡位,制动踏板,方向盘等驾驶员操作意图和蓄电池的荷电状态计算出运行所需的电机输出转矩等需求参数,从而协调各个动力部件工作,保障电动汽车的正常行驶。此外,可通过行车充电和制动能量回收等实现较高的能量利用效率。在完成能量的动力控制的同时,VCU还可以与智能化车身系统一起控制车上的用电设备,以保证驾驶的及时性和安全性。 2.2缩略语
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 缩略语 VCU BMS SOC CAN EV MCU DCDC OBC PDU EPB EPS ABS BCM IC T_Box OBD ACU AC 自定义 TBC 全称 Vehicle Control Unit Battery Management System State of Charge Controller Area Network Electric Vehicle Motor Control Unit Direct Current to Direct Current On Board Charger Power Distribution Unit Electrical Park Brake Electronic Power Steering Antilock Brake System Body Control Module Instrument Cluster Telematics Box On Board Diagnostic Airbag Control Unit Air Conditioner To Be Determined To Be Confirmed 描述 整车控制器 电池管理系统 荷电状态 控制器局域网 电动汽车 电机控制器 直流转直流控制器 车载充电机 高压配电盒 电子驻车 电子转向助力 防抱死系统 车身控制模块 仪表 车联网系统 车载诊断 气囊控制单元 空调 待定 待确认 3.开发流程
3.1VCU控制策略开发流程
整车控制策略开发遵循V流程开发,主要分为系统开发、系统集成、测试与
标定三个阶段。系统开发主要包括软件架构设计、软件设计、功能模块设计、数据管理;系统集成主要包括代码生成及优化、软硬件集成;测试与标定主要包括:MIL测试、SIL测试(可选)、HIL测试、台架测试、实车测试、标定、诊断测试。 3.2VCU控制策略开发需求输入
整车控制策略开发需明确整车控制系统输入输出,与控制组件的信号交互,具体输入如表1所示。
表1 系统输入
序号 1 2 3 4 5 6 输入物名称 低压电气原理图 高压电气原理图 VCU管脚定义 网络拓扑 协议矩阵(含DBC) UDSonCAN诊断调查问卷 备注 VCU所用资源、控制功能统计 VCU所用资源、控制功能统计 VCU所用资源、控制功能统计 与VCU相关网络的网络拓扑 与VCU相关的协议矩阵 VCU诊断 3.3VCU控制策略开发交付物
整车控制策略开发各阶段交付物如表2所示。
表2 整车控制策略交付物
序号 1 2 3 4 5 6 7 8 9 10 11 12 测试与标定 系统集成 系统开发 任务名称 软件架构 软件设计 功能模块设计 数据管理 代码生成及优化 软硬件集成 MIL测试 HIL测试 台架测试 实车测试 标定 诊断测试 输出物 软件架构说明书(含信号交互) 软件设计说明书 模块设计说明书、模型 数据管理文档 配置文档、代码、A2l 集成文档、刷写文档 模块、系统MIL测试用例、测试报告 HIL测试用例、测试报告 台架测试报告 实车测试报告 标定说明书、标定报告 诊断说明书、诊断测试用例、测试报告 4.VCU软件功能需求
VCU控制策略需至少包含表3所示功能。
表3 VCU控制功能需求 序号 1 2 3 功能点 上下电 挡位管理 驾驶员需求扭矩功能描述 包含正常上高压、正常下高压、故障下高压、唤醒、休眠逻辑判断及时序管理 包含挡位识别及相关信号处理 包含驾驶员需求扭矩解析、扭矩协调、扭矩 计算 4 5 6 7 8 9 10 11 12 13 蠕行 跛行 驱动扭矩控制 高压能量管理 充电管理 滑行能量回收 制动能量回收 最高车速计算 辅助控制 故障诊断 蠕行条件判断及蠕行车速控制 整车降扭、限速行驶 包含驱动扭矩仲裁,滤波及输出 包含电池最大充放电功率、电机最大充放功率、DCDC及高压附件功率分配 包括充电上电、充电完成或退出充电时下电 滑行能量回收条件判断及滑行能量回收功率计算 制动能量回收条件判断及制动能量回收功率计算 各驾驶模式最高车速 续航里程计算、空调制冷、PTC加热、DCDC等附件管理 故障识别及故障分级 5.上下电功能需求
5.1功能概述
上电流程,各控制器被唤醒以后开始自检,VCU检测到钥匙KeyOn信号,综合当前系统状态,执行上高压操作。
下电流程,VCU检测到钥匙KeyOff信号,执行下高压操作,并控制相关控制器下电和休眠;高压通电过程中,VCU实时检测系统当前状态,当系统故障达到5级(下高压,自定义),执行下高压操作,当系统故障达到5级(紧急下高压,自定义),执行紧急下高压操作。 5.2功能实现描述 5.2.1上电功能逻辑图
上电功能逻辑图如图1所示。
Key VCUBMSMCUDCDC
图1 上电功能逻辑图
⑴ 钥匙Acc挡或On挡; ⑵ VCU自检; ⑶ BMS自检; ⑷ DCDC自检; ⑸ VCU唤醒MCU; ⑹ MCU自检; ⑺ 钥匙On挡; ⑻ BMS状态反馈; ⑼ MCU状态反馈; ⑽ DCDC状态反馈;
⑾ VCU挡位、踏板、状态检测; ⑿ VCU发送BMS上高压允许; ⒀ BMS反馈上高压完成; ⒁ MCU使能控制; ⒂ DCDC使能控制; ⒃ MCU使能反馈; ⒄ DCDC使能反馈。 5.2.2上电功能需求
钥匙拧到KeyAcc,唤醒各控制器,自检完成后,VCU根据各部件及整车状态
发送主负、预充、主正接触器开闭指令,完成上高压操作。
1)钥匙上低压KeyAcc,唤醒VCU、BMS、DCDC并进行初始化,VCU自检完成后唤醒MCU;
2)上高压条件:VCU检测到KeyOn指令&&挡位为N挡&&加速踏板开度小于2%(自定义)&&充电未连接;
3)VCU发送上高压允许给BMS; 4)BMS反馈上高压完成状态; 5)发送MCU、DCDC使能指令; 6)MCU、DCDC反馈使能;
7)发送IC Ready指令,Ready灯亮;
8)上电过程中VCU实时检测系统状态,当系统故障等级大于等于4级(0扭矩输出,自定义),终止上高压操作。 5.2.3下电功能逻辑图
下电功能逻辑图如图2所示。
KeyVCU BMS MCUDCDC 图2 下电功能逻辑图
⑴ BMS故障反馈; ⑵ MCU故障反馈; ⑶ DCDC故障反馈;
⑷ 系统故障等级为5(紧急下高压,自定义); ⑸ 系统故障等级为4(下高压,自定义); ⑹ 钥匙Off挡;
⑺ 车速≤2kph(车辆停止,自定义); ⑻ MCU禁能; ⑼ DCDC禁能; ⑽ MCU禁能反馈; ⑾ DCDC禁能反馈;
⑿ VCU发送BMS下高压指令; ⒀ BMS反馈下高压状态; ⒁ 主动放电指令; ⒂ 主动放电状态反馈; ⒃ VCU控制MCU休眠; ⒄ 延时下电。
5.2.4下电功能需求
当VCU检测系统故障达到5级(紧急下高压,自定义),执行紧急下高压操作。
1)VCU发送下高压指令给BMS; 2)BMS反馈下高压状态;
3)VCU发送主动放电指令给MCU。
当VCU检测系统故障达到4级(0扭矩输出,自定义),执行下高压操作。待车速≤2kph(自定义),进入正常下电流程。
当VCU检测系统故障≤3(自定义),执行正常下电操作。 1)VCU检测到KeyOff、KeyAcc信号后,检测车速,当车速≤2kph(自定义)时,发送MCU停止使能;
2)VCU发送DCDC停止使能;
3)MCU、DCDC反馈停止使能,VCU发送下高压指令给BMS; 4)BMS反馈下高压完成; 5)VCU发送主动放电指令; 6)MCU反馈主动放电状态; 7)VCU延时下电。
6.挡位管理功能需求
6.1功能概述
整车系统提供R、N、D、S四种挡位模式供驾驶员进行选择,以满足驾驶员倒车、空挡、前进、动力模式四种不同的挡位需求。 6.2功能实现描述 6.2.1功能逻辑图
挡位切换条件如图3所示
无R挡车速<3kph&&制动有效车速<3kph&&制动有效车速>-3kph&&制动有效车速>-3kph&&制动有效N挡无S挡无无D挡
图3 挡位切换条件图
6.2.2功能需求
从N挡挂入R挡时,若车速<3kph(自定义)且制动踏板开关信号有效,VCU立即响应R挡请求,若车速≥3kph,则不响应本次换挡操作,挡位维持N挡。
从N挡挂入D/S挡时,若车速>-3kph(自定义)且制动踏板开关信号有效,VCU立即响应D挡请求,若车速≤-3kph,则不响应本次换挡操作,挡位维持N挡。
从S/D/R挂入N挡时无其他条件。 从R挡挂入D/S挡时,若车速>-3kph(自定义)且制动踏板开关信号有效,VCU立即响应D挡请求,若车速≤-3kph,则不响应本次换挡操作,挡位维持R挡。
从D/S挡挂入R挡时,若车速<3kph(自定义)且制动踏板开关信号有效,VCU立即响应R挡请求,若车速≥3kph,则不响应本次换挡操作,挡位维持D/S挡。
D挡和S挡之间切换无其他条件。
7.驾驶员需求扭矩计算功能需求
7.1功能概述
VCU根据驾驶员加速踏板深度和制动开关的有效值综合判断驾驶员的驾驶意图,计算驾驶员需求扭矩,在其他控制器的干预下通过一定的策略将此扭矩分配给驱动电机,以满足驾驶员的驾驶需求。 7.2功能实现描述 7.2.1功能逻辑图
驾驶员需求扭矩计算功能逻辑如图4所示
能量回收ABS加速踏板制动踏板当前挡位车速踏板驾驶员扭矩需求解析蠕行驾驶员扭矩需求解析驾驶员需求扭矩协调驾驶员需求扭矩 图4 驾驶员需求扭矩计算功能逻辑图
7.2.2功能需求
1.踏板驾驶员需求扭矩解析
踏板驾驶员需求扭矩是指VCU根据驾驶员当前加速踏板深度、车速,综合当前挡位标定出来的驾驶员需求扭矩。
➢ 当车辆处于R挡时,VCU会主动最高车速不超过20kph(自定义),一旦车速超过20kph(自定义),VCU会驾驶员需求扭矩为0,以达到让车辆减速的效果。
➢ 当车辆处于D挡时,选择较为缓和的驾驶员需求扭矩解析,此时经济性优先。D挡最高车速受到,可通过标定D挡最高车速不超过60kph(自定义)。
➢ 当车辆版型S挡时,选择较为激进的驾驶员需求扭矩解析,此时动力性优先。S挡可达到最高车速(102kph)。
2.蠕行驾驶员需求扭矩解析
蠕行功能是指当车辆处于D/R挡,未踩下加速踏板时,VCU请求一定的蠕行扭矩,以保证车辆蠕行行驶。
➢ 当车辆不在S/D/R挡时,车辆没有蠕行功能; ➢ D挡蠕行的最高车速不能超过7kph(自定义); ➢ R挡蠕行的最高车速不能超过5kph(自定义);
➢ 蠕行扭矩的计算需参考车速和当前挡位,当车速低于蠕行目标车速时,VCU需要增加扭矩输出,当车速高于蠕行目标车速时,VCU需要降低目标扭矩乃至输出反向扭矩拖拽车辆达到目标车速;
➢ VCU需要根据当前电驱动系统能力,加以修正,驱动电机蠕行最大扭矩至20Nm(自定义),当蠕行最大扭矩持续5sec(自定义)且蠕行车速无法稳定时,VCU需撤销蠕行扭矩。
➢ 蠕行
3.驾驶员需求扭矩协调
驾驶员需求扭矩协调是指VCU会根据车辆的运行状态和驾驶员的驾驶意图实时选择合理的驾驶员需求扭矩曲线。
➢ 当蠕行功能激活时,驾驶员需求扭矩即为蠕行驾驶员需求扭矩; ➢ 当蠕行功能未激活时,需要保证协调后的驾驶员需求扭矩为Max(踏板驾驶员需求扭矩,蠕行驾驶员需求扭矩);
➢ 当能量回收功能激活时,驾驶员需求扭矩即为能量回收扭矩。 4.驾驶员需求判断
驾驶员需求判断需要VCU根据当前挡位以及驾驶员需求扭矩决策出当前挡位下的驾驶员需求扭矩。
5.驾驶员需求扭矩平滑
驾驶员需求扭矩平滑是指为了保证驾驶员驾驶车辆的平顺性,需要保证解析后的驾驶员需求扭矩不会使得车辆产生抖动、顿挫、冲击等平顺性问题。
➢ VCU需要根据加速踏板位置和加速踏板变化率时刻解析驾驶员扭矩加载速率,不应出现下列情况:
驾驶员需求扭矩响应不及时;
加速踏板连续变化,驾驶员需求扭矩跟着突变;
➢ 在不同车速下,VCU解析出的驾驶员需求扭矩加载速率应不同; ➢ D挡驾驶员需求扭矩响应较慢,经济性优先; ➢ S挡驾驶员需求扭矩响应快,动力性优先。 6.驾驶员需求扭矩干预
驾驶员需求扭矩干预是指当车辆行驶过程中其他系统(ABS)接管时,VCU会根据其他系统的需求合理计算驾驶员需求扭矩。
➢ 其他系统的扭矩优先级要高于VCU计算的初始驾驶员需求扭矩; ➢ VCU不对其他系统的扭矩进行平滑或滤波处理,保证轮端扭矩的快速响应;
7.驾驶员需求扭矩
驾驶员需求扭矩是指当车辆无故障运行时,需要根据各零部件能力,限定驾驶员需求扭矩在合理的范围内,防止各零部件过载运行的情况,当车辆运行时出现故障,需要根据故障等级驾驶员需求扭矩。
➢ VCU需要参考电池系统、驱动电机系统等零部件的能力驾驶员需求扭矩输出,防止这些零部件出现超负荷运行的情况,影响其寿命;
➢ VCU需要根据系统各零部件的运行情况判定系统的故障等级,并根据故障等级的不同驾驶员需求扭矩的输出;
➢ VCU需要车辆最高车速,防止由于各零部件超速导致损坏; VCU需要实时观测驱动电机实际转速,并将最高转速限定在7000rpm(自定义),当驱动电机转速超速时,VCU需要发送反向驱动电机目标扭矩以达到降低驱动电机转速的目的,若驱动电机转速仍然不能下降至安全最高转速,必要时可直接关断驱动电机。
8.蠕行功能需求
8.1功能概述
当车辆处于D/S/R挡,驾驶员完全松开加速踏板后,车辆最终稳定车速会逐渐趋向于7kph(R挡5kph)。 8.2功能实现描述 8.2.1功能逻辑图
蠕行功能逻辑如图5所示
BMS VCUMCU 图5 蠕行功能逻辑图
⑴ BSM需要将SOC、最大允许放电功率发送给VCU;
⑵ MCU需要将驱动电机、电控当前能力,驱动电机转速实时发送给VCU; ⑶ VCU根据驱动电机转速、制动踏板、加速踏板深度、当前挡位等信息判断蠕行功能是否 有效,若蠕行功能有效,VCU需要根据驱动电机转速计算蠕行扭矩,若蠕行功能无效,VCU将蠕行扭矩置为0;
⑷ VCU根据各零部件能力将蠕行扭矩分配给MCU,保证驱动电机扭矩、功率不会超限。 8.2.2功能需求
蠕行功能是当车辆处于D/S/R挡,未踩下加速踏板时,VCU请求蠕行扭矩,以保证车辆蠕行行驶。
➢ 当车辆不在d/s/r挡时,车辆没有蠕行功能; ➢ D/S挡蠕行的最高车速不能超过7kph(自定义); ➢ R挡蠕行的最高车速不能超过5kph(自定义);
➢ 蠕行扭矩的计算需参考驱动电机转速和当前挡位,当前车速低于蠕行目标车速时,VCU需要增加扭矩输出,当车速高于蠕行目标车速时,VCU需要降低目标扭矩乃至输出反向扭矩拖拽以达到目标车速;
➢ VCU需要根据当前电驱系统能力,加以修正,驱动电机蠕行最大扭矩至100Nm(自定义),当蠕行最大扭矩持续5sec(自定义)且蠕行车速无法稳定时,VCU需撤销蠕行扭矩。
如下所有条件满足,蠕行功能进入(条件中涉及到数字均自定义): ➢ 车速≤7kph; ➢ 当前挡位为D/S/R; ➢ 加速踏板深度为0; ➢ 制动踏板开关信号无效;
任一条件满足,蠕行功能退出(条件中涉及到数字均自定义): ➢ 车速≥9kph; ➢ 当前挡位为N挡;
➢ 蠕行需求扭矩<加速踏板扭矩需求; ➢ 制动踏板开关信号有效。
9.驱动扭矩控制功能需求
9.1功能概述
为满足驾驶员扭矩需求,VCU需要将扭矩需求发送给驱动电机,整车不同工作状态需求扭矩计算方式不同。 9.2功能实现描述 9.2.1功能逻辑图
驱动扭矩流如图6所示
驾驶员扭矩需求扭矩仲裁扭矩扭矩滤波扭矩输出 图6 驱动扭矩流图
9.2.2功能需求
VCU接收加速踏板开度,制动踏板开关,挡位,电机转速信号解析驾驶意图,生成相关的扭矩需求。
➢ VCU对电机控制器进行扭矩控制,按照当前加速踏板开度及电机输出特
性曲线给定正向扭矩,电机输出正向驱动力,驱动车辆前进; ➢ VCU需要根据不同的加速踏板输入信息及电机转速信息,通过查表计算
出需求的驱动力矩。在不同挡位需要有不同的MAP; ➢ 挡位在N挡时,驱动扭矩应为0;
➢ 如在驱动扭矩解析过程中VCU接收到制动踏板开关有效信号,应将驱动扭矩需求置为0;
➢ 在车速为正时挂R挡,驱动扭矩应立刻置0,当车速低于一定值时,给电机的方向指令为反转,驱动扭矩按R挡时的MAP给定。在车速为负时挂D/S挡,驱动力矩应立刻置0,当车速低于一定值时,给电机的转方向指令为正转,驱动扭矩按D/S挡时的MAP给定。
➢ 为保证扭矩安全,在扭矩变化时需要滤波,保证扭矩平稳输出; ➢ 最高车速,车速接近于车速,扭矩需求逐渐减小到0; ➢ VCU根据加速踏板开度信号,制动踏板开关信号判断当前所处的模式状
态(蠕行,回馈,加速),在不同模式下选择不同的扭矩输出,且切换模式时扭矩输出必须平滑;
➢ 为防止以上的扭矩条件出现或消失时,或因为其他情况出现的扭矩
突变,需要对扭矩变化率进行;
➢ 在扭矩过零点附近扭矩的变化率要尽量低一些;
➢ 制动优先:无论何种情况,在对车辆施加制动时,优先响应制动扭矩。
10.高压能量管理功能需求
10.1功能概述
高压能量管理是通过识别车辆状态和采集电池、电机、空调系统等高压附件的数据,对各高压电器进行能耗计算和能量分配管理。 10.2功能实现描述 10.2.1功能逻辑图
无
10.2.2功能需求
1.驱动工况
正常驱动工况,高压能量消耗优先级排序为: DCDC>除霜除雾>电机>空调。
1)最大可用功率=电池放电允许功率-Offset(自定义); 2)DCDC允许最大消耗功率=最大可用功率;
3)除霜除雾允许最大消耗功率=最大可用功率-DCDC消耗功率;
4)电机允许最大消耗功率=min{(最大可用功率-DCDC消耗功率-除霜除雾消耗功率):故障引起的驱动功率限值};
5.空调消耗功率=最大可用功率-DCDC消耗功率-除霜除雾消耗功率-电机消
耗功率。
2.能量回馈工况
能量回馈时主要为附件消耗能量,优先级为: DCDC>除霜除雾>空调。
1)最大可用功率=电池放电功率+电机回馈功率-Offset(自定义); 2)DCDC允许最大消耗功率=最大可用功率;
3)除霜除雾允许最大消耗功率=最大可用功率-DCDC消耗功率;
4)空调允许最大消耗功率=最大可用功率-DCDC消耗功率-除霜除雾消耗功率;
5)电机允许最大回馈功率=电池允许充电功率+DCDC消耗功率+除霜除雾消耗功率+空调消耗功率。
11.充电管理功能需求
11.1功能概述
高压能量管理是通过识别车辆状态和采集电池、电机、空调系统等高压附件的数据,对各高压电器进行能耗计算和能量分配管理。 11.2功能实现描述 11.2.1充电上电功能逻辑图
充电上电流程如图7所示
OBC BMSVCUMCU
图7 充电上电流程图
⑴ 充电连接; ⑵ BMS自检; ⑶ VCU自检; ⑷ VCU唤醒MCU; ⑸ MCU自检; ⑹ MCU状态反馈;
⑺ 整车状态反馈; ⑻ OBC状态反馈; ⑼ MCU直流母线电压反馈; ⑽ VCU发送上高压指令给BMS; ⑾ BMS反馈上高压状态; ⑿ DCDC使能。 11.2.2充电上电功能需求
充电连接完成后,唤醒各控制器,自检完成后,BMS根据各部件及整车状态控制主负、预充、主正接触器开闭,完成上高压操作。
1)充电连接成功后,唤醒BMS、VCU、OBC并进行初始化,VCU自检完成后唤醒MCU;
2)VCU将整车状态发送给BMS;
3)BMS控制主负、预充、主正接触器开闭,完成上高压; 4)VCU使能DCDC;
5)充电上电过程中BMS实时检测系统状态,当系统故障等级大于等于4级(下高压,自定义),终止上高压操作。 11.2.3充电下电功能逻辑图
充电下电流程如图8所示
OBC⑴⑶⑷⑸⑹⑻BMS⑵VCUMCU⑺ 图8 充电下电流程图
⑴ OBC故障反馈; ⑵ 整车故障反馈;
⑶ 故障下电,充电完成下电; ⑷ VCU发送BMS下电指令; ⑸ BMS反馈下电状态;
⑹ DCDC禁能; ⑺ MCU休眠; ⑻ 延时下电。 11.2.4充电下电功能需求
充电完成或充电过程中整车故障等级大于等于4级(下高压,自定义),BMS控制主正、主负接触器断开,完成下高压操作。
1)BMS检测充电完成状态或整车故障状态;
2)BMS控制主正、主负接触器断开,并反馈接触器状态; 3)VCU控制DCDC禁能,MCU休眠; 4)延时下电。
12.滑行能量回收功能需求
12.1功能概述
VCU根据驾驶员加速踏板深度和制动踏板开关信号判断驾驶员的驾驶意图,当驾驶员松开加速踏板且不踩制动时,整车会进入滑行能量回收功能,VCU需要保证驾驶性的同时,计算能量回收扭矩的大小来使整车尽可能的回收能量。 12.2功能实现描述 12.2.1功能逻辑图
滑行能量回收流程如图9所示
ABS BMS VCUMCU 图9 滑行能量回收流程图
⑴ ABS车速、状态反馈;
⑵ BMS最大允许充放电功率、SOC反馈;
⑶ 根据制动踏板、加速踏板状态等判断滑行能量回收使能,计算回收扭矩; ⑷ 发送滑行能量回收扭矩给MCU。
12.2.2功能需求
滑行能量回收是指驾驶员松开加速踏板、制动踏板时,VCU根据当前车速计算能量回收扭矩,并将其分配给MCU,以最大化的回收车辆能量。
1)滑行能量回收扭矩需求计算
VCU需要根据当前车速计算滑行能量回收扭矩,不同车速下滑行能量回收扭矩应有所不同。
2)电池状态对滑行能量回收扭矩的影响
当电池电量过高时,应禁止能量回收,同样,VCU需要根据当前允许充电能力的大小能量回收的大小,避免电池产生不必要的过充,影响电池寿命。
3)电驱系统状态对滑行能量回收扭矩的影响
VCU需要实时接收MCU发出的当前驱动系统各零部件的能力,包含驱动电机系统所能允许的最大、最小能力,VCU需要控制MCU使得电驱系统各个零部件工作在能力范围内,避免电驱系统长期工作在超载工况,影响电驱系统寿命。
4)滑行能量回收的执行
VCU需要根据电驱系统的状态,同时参考SOC,实现高低电量驾驶感基本一致。
同时满足如下条件,滑行能量回收进入(涉及到数值的均自定义): ➢ 当前挡位处于D/S挡; ➢ 车速≥20kph; ➢ ABS未激活; ➢ 加速踏板深度≤2%; ➢ 制动踏板开关信号无效; ➢ 动力电池SOC<95%; ➢ 整车故障等级小于4。
任一条件满足,滑行能量回收退出(涉及到数值的均自定义): ➢ 当前挡位处于R/N挡; ➢ 车速≤15kph; ➢ ABS激活;
➢ 加速踏板深度≥5%; ➢ 动力电池SOC≥98%; ➢ 制动踏板开关信号有效 ➢ 整车故障等级大于等于4。
13.制动能量回收功能需求
13.1功能概述
VCU根据驾驶员加速踏板深度和制动踏板开关信号判断驾驶员的驾驶意图,当驾驶员松开加速踏板,踩下制动踏板,且ABS未使能时,整车会进入制动能量回收功能,VCU需要保证驾驶性的同时,计算能量回收扭矩的大小来使整车尽可能的回收能量。 13.2功能实现描述 13.2.1功能逻辑图
制动能量回收流程如图10所示
ABS BMS VCUMCU 图10 制动能量回收流程图
⑴ ABS车速、状态反馈;
⑵ BMS最大允许充放电功率、SOC反馈;
⑶ 根据制动踏板、加速踏板状态等判断制动能量回收使能,计算回收扭矩; ⑷ 发送滑行能量回收扭矩给MCU。 13.2.2功能需求
制动能量回收是指当驾驶员松开加速踏板、踩下制动踏板,且ABS未使能时,VCU需要根据车辆系统的输入信息计算当前需要驱动电机提供的能量回收扭矩,并将其发送给MCU,以最大化车辆制动时的能量回收。
1)制动能量回收扭矩需求计算
VCU需要根据当前车速计算制动能量回收扭矩,不同车速下制动能量回收扭矩应有所不同。
2)电池状态对制动能量回收扭矩的影响
当电池电量过高时,应禁止能量回收,同样,VCU需要根据当前允许充电能
力的大小能量回收的大小,避免电池产生不必要的过充,影响电池寿命。
3)电驱系统状态对滑行能量回收扭矩的影响
VCU需要实时接收MCU发出的当前驱动系统各零部件的能力,包含驱动电机系统所能允许的最大、最小能力,VCU需要控制MCU使得电驱系统各个零部件工作在能力范围内,避免电驱系统长期工作在超载工况,影响电驱系统寿命。
4)制动能量回收的执行
VCU需要根据电驱系统的状态,同时参考SOC,实现高低电量驾驶感基本一致。
同时满足如下条件,制动能量回收进入(涉及到数值的均自定义): ➢ 当前挡位处于D/S挡; ➢ 车速≥20kph; ➢ ABS未激活; ➢ 加速踏板深度≤2%; ➢ 制动踏板开关信号有效; ➢ 动力电池SOC<95%; ➢ 整车故障等级小于4。
任一条件满足,制动能量回收退出(涉及到数值的均自定义): ➢ 当前挡位处于R/N挡; ➢ 车速≤15kph; ➢ ABS激活;
➢ 加速踏板深度≥5%; ➢ 制动踏板开关信号无效; ➢ 动力电池SOC≥98%; ➢ 整车故障等级大于等于4。
14.最高车速计算功能需求
14.1功能概述
VCU根据当前挡位及设计车速要求限定最高车速。 14.2功能实现描述 14.2.1功能逻辑图
无 14.2.2功能需求
➢ 当车速上升到某一设定车速(自定义)时,VCU逐渐降低输出扭矩,接
近最高车速时,扭矩逐渐降低到0;
➢ 当车速降低到某一设定车速(自定义)时,VCU恢复正常输出扭矩;
➢ D挡最高限速60kph(自定义); ➢ S挡最高限速102kph(自定义); ➢ R挡最高限速20kph(自定义)。
15.辅助控制功能需求
15.1功能概述
辅助控制是根据车辆功能需求,对附件工作进行控制,包含DCDC、PTC、空调以及续航里程的计算。 15.2功能实现描述 15.2.1功能逻辑图
无 15.2.2功能需求
1.DCDC控制 1)使能条件:
➢ 车辆高压上电完成,DCDC使能信号有效,收到DCDC反馈状态正常,发
送DCDC电压请求。 2)退出条件:
➢ 车辆下电请求有效且车辆条件允许下电,DCDC使能信号无效。 2.PTC控制 1)使能条件:
➢ 车辆高压上电完成,接收驾驶员PTC请求。 2)退出条件:
➢ 车辆下电请求有效且车辆条件允许下电或驾驶员PTC请求取消。 3.空制 1)使能条件:
➢ 车辆高压上电完成,接收驾驶员AC请求。 2)退出条件:
➢ 车辆下电请求有效且车辆条件允许下电或驾驶员AC请求取消。 4.续航里程计算
➢ 车辆Ready后开始计算续航里程;
➢ 每次上电时根据车辆当前电量和储存的车辆平均能量消耗量计算剩余里程值;
➢ 车辆每行驶1km(自定义)续航里程更新1次; ➢ 续航里程每次更新时变化梯度不大于3km(自定义); ➢ 能量回收时续航里程允许增加;
➢ 充电后续航里程按照最新电量重新计算; ➢ 每次下电时自动存储车辆的平均电能消耗量;
➢ 按照已行驶里程的能量消耗总量计算每公里的平均电能消耗量。
16.故障诊断功能需求
16.1功能概述
故障诊断是VCU识别系统各零部件故障状态,并将各条故障进行分级处理,输出故障等级。 16.2功能实现描述 16.2.1功能逻辑图
无 16.2.2功能需求
1.故障识别
➢ 识别VCU自身故障; ➢ 识别电池系统故障; ➢ 识别电机驱动系统故障; ➢ 识别三合一故障; ➢ 整车其他故障识别。 2.故障分级
将识别的各类故障进行分级,故障等级分为6级,不同故障等级对应不同故障处理。
➢ 等级0:无故障;
➢ 等级1:一级故障,不点灯;
➢ 等级2:二级故障,车辆最大扭矩输出至50%(自定义),仪表点亮故障灯;
➢ 等级3:三级故障,车辆跛行行驶,车辆最大扭矩输出至50%(自定义),最高车速不超过30kph(自定义),仪表点亮故障灯;
➢ 等级4:四级故障,车辆驱动扭矩到0,仪表点亮故障灯; ➢ 等级5:五级故障,车辆出现严重故障,需要紧急下高压,仪表点亮故障灯。
因篇幅问题不能全部显示,请点此查看更多更全内容