UlrichSperhake1,VitorCardoso2,3,FransPretorius4,EmanueleBerti5,Jos´eA.Gonz´alez6
23
TheoretischPhysikalischesInstitut,FriedrichSchillerUniversit¨at,07743Jena,GermanyCENTRA,Dept.deF´ısica,InstitutoSuperiorT´ecnico,Av.RoviscoPais1,1049-001Lisboa,PortugalDepartmentofPhysicsandAstronomy,TheUniversityofMississippi,University,MS38677-1848,USA
4
DepartmentofPhysics,PrincetonUniversity,Princeton,NJ08544,USA
5
JetPropulsionLaboratory,CaliforniaInstituteofTechnology,Pasadena,CA91109,USAand6
InstitutodeF´ısicayMatem´aticas,UniversidadMichoacanadeSanNicol´asdeHidalgo,
EdificioC-3,Cd.Universitaria.C.P.58040Morelia,Michoac´an,M´exicoWestudythehead-oncollisionoftwohighlyboostedequalmass,nonrotatingblackholes.We
determinethewaveforms,radiatedenergies,andmodeexcitationinthecenterofmassframeforavarietyofboosts.Forthefirsttimeweareabletocompareanalyticcalculations,blackholeper-turbationtheory,andstrongfield,nonlinearnumericalcalculationsforthisproblem.Extrapolationofourresults,whichincludevelocitiesofupto0.94c,indicatethatintheultra-relativisticregimeabout14±3%oftheenergyisconvertedintogravitationalwaves.Thisgivesrisetoaluminosityoforder10−2c5/G,thelargestknownsofarinablackholemerger.
PACSnumbers:04.25.D-,04.25.dc,04.25.dg,04.50.-h,04.50.Gh,04.60.Cf,04.70.-s
1
arXiv:0806.1738v1 [gr-qc] 10 Jun 2008I.Introduction.Animportantandlong-standingprob-lemingeneralrelativityconcernstheultra-relativisticscatteringofblackholes(BHs).Thisisoneofthemostviolenteventsonecanconceiveofinthetheory,wherethenonlineareffectsofstrongfieldgravityareexpectedtoplayadominantrole.Thelackofsolutionshasspurredmuchspeculationaboutwhatmayhappeninthisregime.Forexample,theseeventsareanaturaltestinggroundforthecosmiccensorshipconjecture:isthereaclassofinitialconditionswheretheygenericallyleadtothefor-mationofanakedsingularity,ordoeventhorizonsalwaysformtoclothsingularbehaviorinthegeometry?Relatedquestionsconcerntheultra-relativisticscat-teringofparticles.Ifthecenterofmass(CM)energyisbeyondthePlanckscale,gravityisexpectedtodominatetheinteraction.Furthermore,sincethekineticenergydominatesovertherestmassenergy,thegravitationalin-teractionshouldberatherinsensitivetothestructureoftheparticles,implyingthatthetrans-Planckianscatter-ingofpointparticlesshouldbewelldescribedbyBHscat-tering[1].Thisisofparticularrelevanceforrecentpro-posalstosolvethehierarchyproblembyadding“large”extradimensions[2],oranextradimensionwithawarpfactor[3],thusproducinganeffectiveelectroweakPlanckscale.ThisofferstheexcitingpossibilitythatBHscouldbeproducedinparticlecollidersandultrahighenergycosmicrayinteractionswiththeatmosphere[1,4].AnaiveestimateofthecrosssectionforMPl∼1TeVpre-dictsthatsuper-TeVparticlecolliderswillproduceBHsatarateofafewpersecond,makingtheLargeHadronCollider(LHC)atCERNapotentialblackholefactory.AnimportantelementtosearchforBHproductionsig-naturesistounderstandtheBHscatteringprocess,andinparticulartheenergylosttogravitationalradiation.Giventhatthebeamcommissioningto7TeVissched-uledforlate2008,thisisatimelyresearchtopic.Fur-therinterestingapplicationsofhigh-speedBHcollisionstohigh-energyphysicshaverecentlybeensuggestedbytheAdS/CFTcorrespondenceconjecture[5].Particu-larlyintriguingisthepossibilityofusingthisdualitytounderstandpropertiesofthequark-gluonplasmaformedingoldioncollisionsatBrookhaven’sRelativisticHeavyIonCollider(RHIC)throughastudyofultra-relativisticBHcollisionsinAdS[6].Earlyattemptstounderstandtheultra-relativisticBHscatteringproblemwerebasedonworkbyPenrose[7]inthe1970s.HemodeledthespacetimemetricastheunionoftwoAichelburg-Sexlwaves[8],describingthecollisionoftwoinfinitelyboostedSchwarzschildBHs,andfoundaclosedtrappedsurfaceatthemomentofcollision,giv-inganupperlimitofroughly29%oftheinitialenergyofthespacetimeradiatedingravitationalwaves.Beyondthecollisioneventthesolutionisunknown.Giventheextremeconditionsofhigh-speedscatteringitisunlikelythatanalyticsolutionsdescribingthefulldynamicsofthespacetimewillbefound,andthereforenumericalmeth-odsmustbeemployed.Onlyrecentlyhavelong-termstablenumericalevolutionsofblack-holebinariesbeenachieved[9].Theflurryofsubsequentactivityexplor-ingthemergerprocesshassofarexclusivelyfocusedonrest-massdominatedscenarios(see[10]forareview).InthisLetterwereportthefirstnumericalsolutionsde-scribingthecollisionoftwoequalmassBHsintheregimewheretheinitialenergyofthesystemisdominatedbythekineticenergyoftheBHs.InSec.IIwedescribetheproblemsetup,includingthenumericalcodeandinitialconditions.Wealsoreviewsomeexistinganalyticalap-proximationstoaspectsoftheproblem,whichwillbeimportantbothtointerpretthenumericalresultsandtogivesomeconfidenceinextrapolationsoftheresultstoinfiniteboost.InSec.IIIwepresenttheprimaryresults,focusingonthegravitationalwavesemittedduringthecollision.ConcludingremarksaregiveninSec.IV.Un-lessstatedotherwise,weusegeometricalunitsG=c=1.II.NumericalSetupandAnalysisTools.Thenu-mericalsimulationspresentedherehavebeenperformed
2
withtheLeancode,describedindetailin[11]wherehead-oncollisionsofdifferentclassesofinitialdatawerecompared.Hereweexclusivelystudyevolutionsofpunc-tureinitialdata[12]describingtwoequalmass,non-spinning,boostedBHscollidingwithzeroimpactparam-eterintheCMframe.Theinitialcoordinateseparationbetweenthepuncturesissettor0,andtheboostsareprescribedintheformofnon-vanishingBowen-York[13]parameters±PfortheinitiallinearmomentumofeitherBH.TheHamiltonianconstraintissolvedusingAnsorg’sspectralsolverTwoPunctures[14].TheirreduciblemassesMirr1,2oftheBHsareestimatedfromtheirappar-enthorizonareas,calculatedusingThornburg’sapparenthorizonfinderAHFinderDirect[15].ThisenablesustocalculatetheBHmassesM1,2fromChristodoulou’s
222
relationM1,2=Mirr1,2+P,fromwhichwedefinetheLorentzboostparameterγ≡M1,2/Mirr1,2.Fromanu-mericalpointofview,simulationswithlargevaluesofγarechallengingforseveralreasons:theLorentzcontrac-tiondecreasesthesmallestlengthscalethatneedstoberesolved,variablesdevelopsteepgradientsthatrequiremoreresolutiontoevolvewithcomparabletruncationerrortotheunboostedcase,and,asdiscussedbelow,largeinitialseparationsareneededtoestimateandre-movespuriousgravitationalradiationintheinitialdata.Thusmesh-refinementisessential,andhereitisprovidedviatheCarpetpackage[16].
WeusetheNewman-PenrosescalarΨ4tomea-suregravitationalradiation.AtanextractionradiusrfromthecenterofthecollisionwedecomposeΨ4intomultipolemodesψlmofthesphericalharmonicsofspin-weight−2,−2Ylm,accordingtoΨ4(t,r,θ,φ)=∞l
l=2m=−l−2Ylm(θ,φ)ψlm(t,r).Duetothesymme-triesofthisproblem,theonlynon-vanishingmultipolesallhaveevenl,m=0,andarepurelyreal,correspondingtoasinglepolarizationstateh+.Theenergyspectrumandluminosityoftheradiationaregivenby
dE
16π2
dE
t16π−∞ˆl0(ω)|2|ψ
,
dω2
dEl˜≡ψl0(t)dt
(1)
0.200.150.100.0502ψ0.00rM-0.05β=0.94-0.10β=0.82-0.15β=0.β=0.36-0.20-30-20-100(t-r)/M102030405060FIG.1:Dominantmultipolarcomponentψ20(t−r)fordif-ferentvaluesofβ,asindicatedintheinset.
InFig.1weshowthedominantcomponentψ20ofthewaveformfromcollisionswithγ=1.07,1.3,1.7,3.0(correspondingtoβ=v/c≃0.36,0.,0.82,0.94,re-spectively).Theoriginofthe(t−r)axisroughlycorre-spondstotheinstantofformationofaCAH.Onecanidentifythreemainpartsinthewaveforms:aprecursor,amainburstattheonsetoftheCAHformationandthefinalringdowntail.Theseseemtobeuniversalproper-tiesofcollisionsinvolvingBHsandwereobservedinthepastindifferentsettings[18,19].Thestartofringdown,
roughlyassociatedwiththeabsolutemaxima|ψpeak
theCAHformation,indepen-20|in|ψ20|,occurs∼15Mafterdentlyofγ.Exceptforasmallneighborhoodaround
γ∼1,themaximalwaveamplitude|ψpeak
withtheboostfactor.The20|increasesmonotonicallysmalldipinthewaveamplitudeforsmall,butnon-zerovelocitieshasbeenseenbeforebothinnumericalsimulationsandan-alyticpredictions[20].Formoderateboosts,weobservetheabsolutemaximainψ20tobewellapproximatedby
[cf.Eq.(3)]Mrψpeak
20≈0.26+0.48γ−2[1/4+log(1/2γ)].Thepeakamplitudeinthewaveformh20isroughly
hpeakpeak20
∼ψ20/ω2
forQNM,whereωQNMisthelowestring-downfrequencythemode[21].
Figure2showstheenergyspectrum(1)forcollisionswithdifferentCMenergy.ForlargeCMenergies,thespectrumisnearlyflatuptosomecutofffrequency.AflatspectrumispredictedbytheZFLandPPapproaches,asindicatedbythedottedlinesinthefigure.Thecutofffre-quencyiswellapproximatedbytheleast-dampedQNMofthefinalhole,markedbyaverticalline.Thespectrumincreasesatsmallfrequenciesbecauseofinitialdatacon-taminationandfinite-distanceeffects.
Ournumericalresultsindicatethatthepeakluminos-ity(2)isattainedapproximately10Mafterthe−CAHformation.Thepeakluminosityisabout5×1032forβ=0.9,andmaybeaslargeas10−asγ→∞.Restoringunits,weget10−2c5/G∼3.6×1057ergs−1,thelargestluminosityfromaBHmergerknowntodate.Thisistwoordersofmagnitudelargerthanfortheinfall
3
10-12M/)10-2ωd/2Ed-3β=0.94(10β=0.82β=0.β=0.36ωQNM10-400.2Mω0.40.6FIG.2:Energyspectrumforl=2anddifferentvaluesofβ.HorizontallinesarethecorrespondingZFL-PPpredictions,verticallinesaretheQNMfrequenciesofthefinalBH.
fromrestoftwoequalmassBHs,andoneorderofmag-nitudelargerthanfortheinspiralofequalmassbinaries.Nevertheless,itisstilltwoordersofmagnitudebelowtheuniversallimitsuggestedbyDyson,dE/dt1[22].
1211109)8%7( M6/E5432100.30.40.50.6β0.70.80.91FIG.3:Totalradiatedenergy(includingerrorbars)asafunc-tionofβ,andbestfitusingtheZFLprediction.
ThetotalenergyEradiatedasafunctionofboostpa-rameterisshowninFig.3.ErrorbarsontheradiatedenergiesaredeterminedasdescribedinSec.II.WehaveverifiedthatEcalculatedfromtheradiation(2)iscon-sistentwithalternativeestimatesobtainedbydirectlymeasuringthemassofthefinalholefromtheCAHprop-erties,andbyusingtheringdownfrequencytoestimatethemassofthefinalhole[21].TheZFLpredictsthefol-lowingfunctionalformforthetotalradiatedenergyasafunctionofCMboostγ:
E(1−4γ2)log(γ2γ2+
2γ
3+
4
TABLEI:Relativemultipolarcontribution(in%)and,inparentheses,theZFLprediction.
E4/E21.0(1.4)2.4(3.4)3.9(5.4)5.0(7.3)7.3(10)11(14)10E6/E20.2(0.3)1.1(1.5)2.1(4.0)4.2(7.5)11(16)33(30)
problemisnotobvious.However,giventhegoodagree-mentwithournumericalresultsinthekinetic-energydominatedregimeγ>2,theextrapolationprocedureshouldprovideareasonablyaccurateestimateforE∞.Withregardtothemultipolarcontributionsofthera-diatedenergy,wefindthatE4isatleastoneorderofmagnitudesmallerthanE2forslow-motioncollisions.ThisobservationisconsistentwiththePPresultsforaninfallfromrest[18],whichpredictanexponentialde-creaseofElwithl.ForlargerbooststheZFLandPPapproachpredictastrongincreaseintherelativecontri-butionofhighermultipoles,withEl∼M/l2asγ→∞.Ournumericalresultsareingoodagreementwiththesecalculations,asdemonstratedinTableI.
IV.Conclusions.In1971,Hawking[23]placedanup-perlimitof29%onthetotalenergyradiatedwhentwoBHs,initiallyatrest,coalesce.NumericalsimulationsofEinstein’sequations[19]latershowedthatthetruevalueisaround0.1%—twoordersofmagnitudesmallerthanHawking’sbound.Usingthesameareatheoremargument,Penrose[7]derivedanupperboundof29%
forultra-relativistichead-oncollisions(thatthenumer-icalvaluesofthetwoboundsagreeisapparentlyjustacoincidence).Herewehavepresentedresultsindicatingthattheanswerinthehighenergylimitis0.14±0.03,slightlylessthanafactorof2ofPenrose’sbound,thoughquiteclosetotheestimateofD’eathandPaynecomputedusingperturbativetechniques[24].Eventhoughourcal-culationsarein4D,aconsequenceofthistosearchesforBHformationattheLHCisawarningthatestimatesofthe“missingenergy”basedupontrappedsurfacecalcu-lationscouldsignificantlyoverestimatethiseffect.
Thislongoverduestudyrepresentsanimportantsteptowardsafullunderstandingofhigh-energyBHcolli-sions.Moreworkisneededtostudyscatteringwithnon-zeroimpactparameter,unequalmassesandnon-zerospins.ForapplicationstoLHCandRHICphysics,in-cludingtheeffectsofextradimensions,chargeandAdSasymptotics(forRHIC)willbenecessary.Acknowledgements.ThisworkwassupportedinpartbyDFGgrantSFB/TR7,byFCT-Por-tugalthroughprojectsPTDC/FIS/175/2006andPOCI/FP/81915/2007,andbyaFulbrightScholarshiptoVC.EBwassupportedbytheNASAPostdoctoralPro-gramatJPL/Caltech,administeredbyOakRidgeAs-sociatedUniversitiesthroughacontractwithNASA.FPgratefullyacknowledgessupportfromtheAlfredP.SloanFoundationandNSFPHY-0745779.ComputationswereperformedatLRZMunich,MilipeiaatCFCinCoimbra,andtheWoodhenclusteratPrincetonUniversity.
[1]T.BanksandW.Fischler,hep-th/9906038;Phys.Rev.
D66,044011(2002);E.KohlprathandG.Veneziano,JHEP0206,057(2002).
[2]N.Arkani-Hamed,S.DimopoulosandG.R.Dvali,Phys.
Lett.B429,263(1998);I.Antoniadisetal.Phys.Lett.B436,257(1998).
[3]L.RandallandR.Sundrum,Phys.Rev.Lett.83,3370
(1999);Phys.Rev.Lett.83,4690(1999).
[4]S.DimopoulosandG.Landsberg,Phys.Rev.Lett.87,
161602(2001);J.L.FengandA.D.Shapere,Phys.Rev.Lett.88,021303(2002).
[5]J.M.Maldacena,Adv.Theor.Math.Phys.2,231(1998);
E.Witten,Adv.Theor.Math.Phys.2,253(1998);S.S.Gubser,I.R.KlebanovandA.M.Polyakov,Phys.Lett.B428,105(1998).
[6]H.Nastase,arXiv:hep-th/0501068;A.J.Amsel,D.Ma-rolf,A.Virmani,JHEP0804,025(2008);S.S.Gubser,S.S.Pufu,A.Yarom,arXiv:0805.1551[hep-th].
[7]R.Penrose,presentedattheCambridgeUniversity
Seminar,Cambridge,England,1974(unpublished);D.M.EardleyandS.B.Giddings,Phys.Rev.D66,044011(2002).
[8]P.C.AichelburgandR.U.Sexl,Gen.Rel.Grav.2,303
(1971).
[9]F.Pretorius,Phys.Rev.Lett.95,121101(2005);
M.Campanelli,C.O.Lousto,P.MarronettiandY.Zlo-chower,Phys.Rev.Lett.96,111101(2006);J.G.Baker,J.Centrella,D.I.Choi,M.KoppitzandJ.vanMeter,
[10][11][12][13][14][15][16][17][18]
[19][20][21][22]
[23][24]
Phys.Rev.Lett.96,111102(2006).F.Pretorius,arXiv:0710.1338[gr-qc].
U.Sperhake,Phys.Rev.D76,104015(2007).
S.BrandtandB.Brugmann,Phys.Rev.Lett.78,3606(1997).
J.BowenandJ.York,Phys.Rev.D21,2047(1980).M.Ansorg,B.BrugmannandW.Tichy,Phys.Rev.D70,0011(2004).
J.Thornburg,Phys.Rev.D54,49(1996);Class.Quant.Grav.21,743(2004).
CarpetCodehomepage,http://www.carpetcode.org/L.Smarr,Phys.Rev.D15,2069(1977).
M.Davis,R.Ruffini,W.H.PressandR.H.Price,Phys.Rev.Lett.27,1466(1971);C.LoustoandR.Price,Phys.Rev.D55,2124(1997);V.CardosoandJ.P.S.Lemos,Phys.Lett.B538,1(2002).
P.Anninos,D.Hobill,E.Seidel,L.SmarrandW.M.Suen,Phys.Rev.Lett.71,2851(1993).J.G.Bakeretal.,Phys.Rev.D55,829(1997).
E.Berti,V.CardosoandC.M.Will,Phys.Rev.D73,0030(2006).
F.Dyson,InterstellarCommunication,ed.A.G.W.Cameron(Benjamin,NY,1963),asquotedbyK.ThorneinGravitationalRadiation,eds.N.DeruelleandT.Piran(Amsterdam,Netherlands:North-holland,1983).S.W.Hawking,Phys.Rev.Lett.26,1344(1971).
P.D.D’EathandP.N.Payne,Phys.Rev.D46,694(1992).
因篇幅问题不能全部显示,请点此查看更多更全内容