微智科技网
您的当前位置:首页2012山东省分析数据库的考试题目基础

2012山东省分析数据库的考试题目基础

来源:微智科技网
1、给定n个村庄之间的交通图,若村庄i和j之间有道路,则将顶点i和j用边连接,边上的Wij表示这条道路的长度,现在要从这n个村庄中选择一个村庄建一所医院,问这所医院应建在哪个村庄,才能使离医院最远的村庄到医院的路程最短?试设计一个解答上述问题的算法,并应用该算法解答如图所示的实例。(20分)

2、本题应使用深度优先遍历,从主调函数进入dfs(v)时 ,开始记数,若退出dfs()前,已访问完有向图的全部顶点(设为n个),则有向图有根,v为根结点。将n个顶点从1到n编号,各调用一次dfs()过程,就可以求出全部的根结点。题中有向图的邻接表存储结构、记顶点个数的变量、以及访问标记数组等均设计为全局变量。建立有向图g的邻接表存储结构参见上面第2题,这里只给出判断有向图是否有根的算法。

int num=0, visited[]=0 //num记访问顶点个数,访问数组visited初始化。 const n=用户定义的顶点数;

AdjList g ; //用邻接表作存储结构的有向图g。 void dfs(v)

{visited [v]=1; num++; //访问的顶点数+1

if (num==n) {printf(“%d是有向图的根。\\n”,v); num=0;}//if p=g[v].firstarc; while (p)

{if (visied[p->adjvex]==0) dfs (p->adjvex); p=p->next;} //while

visited[v]=0; num--; //恢复顶点v }//dfs

void JudgeRoot()

//判断有向图是否有根,有根则输出之。 {static int i ;

for (i=1;i<=n;i++ ) //从每个顶点出发,调用dfs()各一次。 {num=0; visited[1..n]=0; dfs(i); } }// JudgeRoot

算法中打印根时,输出顶点在邻接表中的序号(下标),若要输出顶点信息,可使用g[i].vertex。 3、由二叉树的前序遍历和中序遍历序列能确定唯一的一棵二叉树,下面程序的作用是实现由已知某二叉树的前序遍历和中序遍历序列,生成一棵用二叉链表表示的二叉树并打印出后序遍历序列,请写出程序所缺的语句。 #define MAX 100 typedef struct Node

{char info; struct Node *llink, *rlink; }TNODE; char pred[MAX],inod[MAX]; main(int argc,int **argv) { TNODE *root; if(argc<3) exit 0;

strcpy(pred,argv[1]); strcpy(inod,argv[2]); root=restore(pred,inod,strlen(pred));

postorder(root); }

TNODE *restore(char *ppos,char *ipos,int n) { TNODE *ptr; char *rpos; int k; if(n<=0) return NULL; ptr->info=(1)_______;

for((2)_______ ; rposptr->llink=restore(ppos+1, (4)_______,k );

ptr->rlink=restore ((5)_______+k,rpos+1,n-1-k); return ptr; }

postorder(TNODE*ptr) { if(ptr=NULL) return;

postorder(ptr->llink); postorder(ptr->rlink); printf(“%c”,ptr->info); }

4、冒泡排序算法是把大的元素向上移(气泡的上浮),也可以把小的元素向下移(气泡的下沉)请给出上浮和下沉过程交替的冒泡排序算法。

48.有n个记录存储在带头结点的双向链表中,现用双向起泡排序法对其按上升序进行排序,请写出这种排序的算法。(注:双向起泡排序即相邻两趟排序向相反方向起泡)

5、 连通图的生成树包括图中的全部n个顶点和足以使图连通的n-1条边,最小生成树是边上权值之和最小的生成树。故可按权值从大到小对边进行排序,然后从大到小将边删除。每删除一条当前权值最大的边后,就去测试图是否仍连通,若不再连通,则将该边恢复。若仍连通,继续向下删;直到剩n-1条边为止。 void SpnTree (AdjList g)

//用“破圈法”求解带权连通无向图的一棵最小代价生成树。

{typedef struct {int i,j,w}node; //设顶点信息就是顶点编号,权是整型数 node edge[];

scanf( \"%d%d\输入边数和顶点数。

for (i=1;i<=e;i++) //输入e条边:顶点,权值。

scanf(\"%d%d%d\" ,&edge[i].i ,&edge[i].j ,&edge[i].w);

for (i=2;i<=e;i++) //按边上的权值大小,对边进行逆序排序。 {edge[0]=edge[i]; j=i-1;

while (edge[j].wwhile (eg>=n) //破圈,直到边数e=n-1. {if (connect(k)) //删除第k条边若仍连通。

{edge[k].w=0; eg--; }//测试下一条边edge[k],权值置0表示该边被删除 k++; //下条边 }//while }//算法结束。

connect()是测试图是否连通的函数,可用图的遍历实现,

6、 连通图的生成树包括图中的全部n个顶点和足以使图连通的n-1条边,最小生成树是边上权值之和最小的生成树。故可按权值从大到小对边进行排序,然后从大到小将边删除。每删除一条当前权值最大的边后,就去测试图是否仍连通,若不再连通,则将该边恢复。若仍连通,继续向下删;直到剩n-1条边为止。 void SpnTree (AdjList g)

//用“破圈法”求解带权连通无向图的一棵最小代价生成树。

{typedef struct {int i,j,w}node; //设顶点信息就是顶点编号,权是整型数 node edge[];

scanf( \"%d%d\输入边数和顶点数。

for (i=1;i<=e;i++) //输入e条边:顶点,权值。

scanf(\"%d%d%d\" ,&edge[i].i ,&edge[i].j ,&edge[i].w);

for (i=2;i<=e;i++) //按边上的权值大小,对边进行逆序排序。 {edge[0]=edge[i]; j=i-1;

while (edge[j].wwhile (eg>=n) //破圈,直到边数e=n-1. {if (connect(k)) //删除第k条边若仍连通。

{edge[k].w=0; eg--; }//测试下一条边edge[k],权值置0表示该边被删除 k++; //下条边 }//while }//算法结束。

connect()是测试图是否连通的函数,可用图的遍历实现,

7、二部图(bipartite graph) G=(V,E)是一个能将其结点集V分为两不相交子集V 1和V2=V-V1的无向图,使得:V1中的任何两个结点在图G中均不相邻,V2中的任何结点在图G中也均不相邻。 (1).请各举一个结点个数为5的二部图和非二部图的例子。 (2).请用C或PASCAL编写一个函数BIPARTITE判断一个连通无向图G是否是二部图,并分析程序的时间复杂度。设G用二维数组A来表示,大小为n*n(n为结点个数)。请在程序中加必要的注释。若有必要可直接利用堆栈或队列操作。【 8、由二叉树的前序遍历和中序遍历序列能确定唯一的一棵二叉树,下面程序的作用是实现由已知某二叉树的前序遍历和中序遍历序列,生成一棵用二叉链表表示的二叉树并打印出后序遍历序列,请写出程序所缺的语句。 #define MAX 100 typedef struct Node

{char info; struct Node *llink, *rlink; }TNODE; char pred[MAX],inod[MAX]; main(int argc,int **argv) { TNODE *root; if(argc<3) exit 0;

strcpy(pred,argv[1]); strcpy(inod,argv[2]); root=restore(pred,inod,strlen(pred)); postorder(root); }

TNODE *restore(char *ppos,char *ipos,int n) { TNODE *ptr; char *rpos; int k; if(n<=0) return NULL; ptr->info=(1)_______;

for((2)_______ ; rposptr->llink=restore(ppos+1, (4)_______,k );

ptr->rlink=restore ((5)_______+k,rpos+1,n-1-k); return ptr; }

postorder(TNODE*ptr) { if(ptr=NULL) return;

postorder(ptr->llink); postorder(ptr->rlink); printf(“%c”,ptr->info); }

9、在有向图G中,如果r到G中的每个结点都有路径可达,则称结点r为G的根结点。编写一个算法完成下列功能: (1).建立有向图G的邻接表存储结构; (2).判断有向图G是否有根,若有,则打印出所有根结点的值。

10、设计一个尽可能的高效算法输出单链表的倒数第K个元素。

因篇幅问题不能全部显示,请点此查看更多更全内容