INEQUALITYFOREXPONENTIALSUMS
´sErd´PeterBorweinandTamaelyi
DedicatedtoProfessorGeorgeG.Lorentzontheoccasionofhis85-thbirthday.
AsubtleBernstein-typeextremalproblemissolvedbyestablishingthe
sup
0=f∈E2n
equality
|f(0)|
n−1
e−1
kf[a,b]
≤
2n−1
1991MathematicsSubjectClassification.Primary:41A17.
Keywordsandphrases.BernsteinInequality,ExponentialSums.
Researchofthefirstauthorsupported,inpart,byNSERCofCanada.Researchofthesecondauthorsupported,inpart,byNSFunderGrantNo.DMS-9024901andconductedwhileanNSERCInternationalFellowatSimonFraserUniversity.
TypesetbyAMS-TEX
1
2
´ERDELYI´PETERBORWEINANDTAMAS
1.Introduction
In“NonlinearApproximationTheory”,Braess[3]writes“Therationalfunctions
andexponentialsumsbelongtothoseconcretefamiliesoffunctionswhicharethemostfrequentlyusedinnonlinearapproximationtheory.Thestartingpointofconsiderationofexponentialsumsisanapproximationproblemoftenencounteredfortheanalysisofdecayprocessesinnaturalsciences.Agivenempiricalfunctiononarealintervalistobeapproximatedbysumsoftheform
nj=1
ajeλjt,
wheretheparametersajandλjaretobedetermined,whilenisfixed.”
Theaimofthispaperistoprovethe“right”Bernstein-typeinequalityforex-ponentialsums.Thisinequalityisthekeytoprovinginversetheoremsforapprox-imationbyexponentialsums,aswewillelaboratelater.Let
En:=
f:f(t)=a0+
nj=1
ajeλjt,
aj,λj∈R.
SoEnisthecollectionofalln+1termexponentialsumswithconstantfirstterm.
Schmidt[10]provedthatthereisaconstantc(n)dependingonlyonnsothatf[a+δ,b−δ]≤c(n)δ−1f[a,b]
foreveryp∈Enandδ∈0,1
2,thereisaconstantc(α)dependingonlyonαso
thatc(n)intheaboveinequalitycanbereplacedbyc(α)nαlogn(Xuimprovedthistoallowα=1
kf[a,b]
≤
2n−1
n−1
e−1
kf[a,b]
,y∈(a,b)
isestablishedinTheorem3.3.Theorem3.2followseasilyfromourothercentralresult,Theorem3.1.Thisstatesthattheequality
sup
0=f∈E2n
|f(0)|
ASHARPBERNSTEIN-TYPEINEQUALITY3
holds,where
2n:=E
f:f(t)=a0+
nj=1
ajeλjt+bje
−λjt
,
aj,bj,λj∈R.
TheseresultscomplementNewman’sbeautifulMarkov-typeinequality[9],see
also[2],thatstates
2
f[0,∞)
≤9
nj=0
λj,
whereEn(Λ):=span{e−λ0t,e−λ1t,...,e−λnt}foranysequenceΛofdistinctnon-negativenumbersλj.
DenotebyPnthesetofallpolynomialsofdegreeatmostnwithrealcoefficients.
Bernstein’sclassicalinequalitystatesthefollowing.
Proposition1.1(Bernstein’sInequality).Theinequality
|p(x)|≤
holdsforeveryp∈Pn.
Thisimpliesbysubstitutionandscaling(thoughnotentirelyobviously)that
|f(y)|≤
2n
n
p[−1,1],
1−x2
−1 ´ERDELYI´PETERBORWEINANDTAMAS Soonededucesinastandardfashion[4,6],forexample,thatifthereisasequence (fn)∞fonanintervaln=1ofexponentialsumswithfn∈Enthat−mapproximates[a,b]uniformlywitherrorsf−fn[a,b]=on,m∈N,thenfismtimescontinuouslydifferentiableon(a,b). ThefollowingslightimprovementofBernstein’sinequalitymaybefoundinNatanson[8]. Proposition1.2.Theinequality |p(0)|≤(2n−1)p[−1,1] holdsforeveryp∈P2n. NotethatProposition1.1impliesProposition1.2onlywith(2n−1)replacedby2n.ThefollowingcorollaryofProposition1.2canbeobtainedbyalineartransformation.ItplaysanimportantroleintheproofofTheorem3.1.Proposition1.3.Theinequality |p(x)|≤ 2n−1 1/p foreveryf∈En,p∈(0,2],andδ∈0,1 δ fLp[a,b] ASHARPBERNSTEIN-TYPEINEQUALITY5 areusedthroughoutthispaperformeasurablefunctionsfdefinedonameasurablesetA⊂Randforp∈(0,∞).IfA:=[a,b]isaninterval,thenthenotationLp[a,b]:=Lp(A)isused. 2naredefinedintheIntroduction.TheclassesE∗andE∗cTheclassesEnandEnn areintroducedinSection8. Thespaceofallreal-valuedcontinuousfunctionsdefinedonA⊂RequippedwiththeuniformnormisdenotedbyC(A). 3.NewResults Theorem3.1.Wehave sup 0=f∈E2n |f(0)| f[a,b] ≤ 2n−1 n−1 e−1 holdsforeveryn∈Nandy∈(a,b).Theorem3.4.Theinequality f[a+δ,b−δ]≤22/p 2 kf[a,b] n+1 (b−a).2 4.ChebyshevandDescartesSystems Theproofofourmainresultreliesheavilyontheobservationthatforevery 0<λ0<λ1<···, (sinhλ0t,sinhλ1t,...)isaDescartessystemon(0,∞).InthissectionwegivethedefinitionsofChebyshevandDescartessystems.TheonlyresultofthissectionthatisnottobefoundinstandardsourcesisthecriticalLemma4.5.Theremainingtheorycanbefoundin,forexample,[5]or[4]. 6 ´ERDELYI´PETERBORWEINANDTAMAS Definition4.1(ChebyshevSystem).LetI⊂Rbeaninterval.The sequence(f0,f1,...,fn)iscalleda(real)Chebyshevsystemofdimensionn+1onIiff0,f1,...,fnarereal-valuedcontinuousfunctionsonI,span{f0,f1,...,fn}overRisann+1dimensionalsubspaceofC(A),andanyf∈span{f0,f1,...,fn}thathasn+1distinctzerosonIisidenticallyzero. If(f0,f1,...,fn)isaChebyshevsystemonI,thenspan{f0,f1,...,fn}iscalledaChebyshevspaceonI. Thefollowingsimpleequivalencesarewellknownfactsoflinearalgebra.Proposition4.2.Letf0,f1,...,fnbereal-valuedcontinuousfunctionsonanin-tervalI⊂R.Thenthefollowingareequivalent. a]Every0=p∈span{f0,f1,...,fn}hasatmostndistinctzerosonI. b]Ifx0,x1,...,xnaredistinctelementsofIandy0,y1,...,ynarerealnumbers,thenthereexistsauniquep∈span{f0,f1,...,fn}sothat p(xi)=yi, i=1,2,...,n. c]Ifx0,x1,...,xnaredistinctpointsofI,then f0(x0)... f0f1...fn...:=.D..x0x1...xn f0(xn)... fn(x0) ..=0.. fn(xn) Definition4.3(DescartesSystem).Thesystem(f0,f1,...,fn)issaidtobeaDescartessystem(orordercompleteChebyshevsystem)onanintervalIifeachfi∈C(I)and fi0fi1...fim >0D x0x1...xmforany0≤i0 (eλ0t,eλ1t,...), λ0<λ1<··· isaDescartessystemon(−∞,∞).Inparticular,itisalsoaChebyshevsystemon(−∞,∞). Proof.ThedeterminantinDefinition4.3isageneralizedVandermonde.See,forexample,[5,p.9]. ThefollowinglemmaplaysacrucialroleintheproofofTheorem3.1. ASHARPBERNSTEIN-TYPEINEQUALITY7 Lemma4.5.Suppose0<λ0<λ1<···.Then (sinhλ0t,sinhλ1t,...) isaDescartessystemon(0,∞). Proof.Let0≤i0 isaChebyshevsystemon(0,∞).Indeed,let 0=f∈span{sinhλi0t,sinhλi1t,...,sinhλimt}. Thenandsince 0=f∈span{e±λi0t,e±λi1t,...,e±λimt} span{e±λi0t,e±λi1t,...,e±λimt} isaChebyshevsystem,fhasatmost2m+1zerosin(−∞,∞).Sincefisodd,ithasatmostmzerosin(0,∞). Sinceforevery0≤i0 sinhλi0tsinhλi1t...sinhλimtD x0x1...xmisnon-zeroforany0 D(α):=D αx0αx1...αxmand D(α):=D ∗ 1 2e λi1t ... 1 D∗(α) Since (eλi0t,eλi1t,...,eλimt) =1. 8 ´ERDELYI´PETERBORWEINANDTAMAS isaDescartessystemon(−∞,∞),D∗(α)>0foreveryα>0.Sotheabovelimit relationsimplythatD(α)>0foreverylargeenoughα,henceforeveryα>0.Inparticular, D(1)=D sinhλi0tsinhλi1t...x0x1... sinhλimt xm >0, whichfinishestheproof. ThefollowingpropositiononpolynomialsfromthespanofaDescartessystemwithamaximalnumberofzerosisalsoneededinthenextsection.Itsproofisstandard,andcanbepiecedtogetherfrom[5,pp.25-36]orfoundin[2,p.108].Lemma4.6.Suppose(f0,f1,...,fn)isaDescartessystemon[a,b].Suppose a p=fn+ sothat(1)p(ti)=0, i=1,2,...,n. n−1i=0 aifi,ai∈R Further,thispsatisfies(2)p(t)=0, t∈/{t1,t2,...,tn}, (3)p(t)changessignateacht1,t2,...,tn,(4)aiai+1<0, i=0,1,...,n−1,an:=1, (5)p(t)>0fort∈(tn,b],and(−1)np(t)>0fort∈[a,t1),(6)(−1)n−ip(t)>0, t∈(ti,ti+1),i=1,2,...,n−1. 5.ChebyshevPolynomialsforspan{sinhλ0t,sinhλ1t,...,sinhλnt}Westudythespace Hn:=span{sinhλ0t,sinhλ1t,...,sinhλnt}, where 0<λ0<λ1<···<λn. WecandefinethegeneralizedChebyshevpolynomialTnforHnon[0,1]bythe followingthreeproperties:(5.1) Tn∈span{sinhλ0t,sinhλ1t,...,sinhλnt}, ASHARPBERNSTEIN-TYPEINEQUALITY9 thereexistsanalternationsequence(x0 (−1)iTn(xi)=Tn[0,1], i=0,1,...,n, TheexistenceanduniquenessofsuchaTnfollowsfromthepropertiesofthebestuniformapproximationtosinhλ0ton[,1]fromann-dimensionalChebyshevspaceon[,1](>0issufficientlysmall).See[5,p.35],forexample. ThefollowingextremalpropertyoftheChebyshevpolynomialTnwillbeneededinthenextsection. Theorem5.1.Usingthenotationabove,wehave sup |p(0)| Tn[0,1] =Tn(0). 0=p∈Hn Proof.Supposep∈Hnwithp[0,1]<1andp(0)>0.ObservethatTn−p hasatleastonezeroineachoftheintervals(x0,x1),(x1,x2),...(xn−1,xn),where(x0 (0)wouldimplythatTn−phasatleastonezeroin(0,x0),thereforep(0)>Tn 0=Tn−p∈Hnhasatleastn+1zerosin(0,1),whichisimpossible. 6.AComparisonTheorem TheheartoftheproofofTheorem3.1isthefollowingcomparisontheorem,whichcanbeprovedbyazerocountingargument.ThemethodofourproofisverysimilartothatofacomparisontheremofPinkusandSmith[11]forDescartessystems.Infact,thesimpleproofofTheorem6.1wassuggestedbyAllanPinkus.Theorem6.1.Let 0<λ0<λ1<···<λn Supposeγi≤λiforeachi.Let Hn:=span{sinhλ0t,sinhλ1t,...,sinhλnt} and Gn:=span{sinhγ0t,sinhγ1t,...,sinhγnt}. Then 0=p∈Hn and 0<γ0<γ1<···<γn. max |p(0)| p[0,1] . 10 ´ERDELYI´PETERBORWEINANDTAMAS Proof.Wehave 0=p∈Hn sup |p(0)| Tn[0,1] , whereTnistheChebyshevpolynomialforHnon[0,1].Inparticular,Tnhasn distinctzerosin(0,1).Let Tn(t)=: nj=0 cjsinhλjt,cj∈R. ByLemma4.6,(−1)jcj>0.Letk∈{1,2,...n}befixed.Let(γj)nj=0besuchthat γ0<γ1<···<γn, γj=λjforj=k, λk−1<γk<λk (weletγ−1:=0).Toprovethistheorem,itissufficienttostudytheabovecase sincethegeneralcasefollowsfromthisbyafinitenumberofpairwisecomparisons.Lett1 sothat Qn(ti)=Tn(ti), i=0,1,...,n. BytheuniqueinterpolationpropertyofChebyshevspaces,Qnisuniquelydeter-mined,hasnzeros(thepointst1,t2,...,tn),andispositiveatt0.ByLemma4,6,(−1)jdj>0foreachj=0,1,...,n.Wehave (Tn−Qn)(t)=cksinhλkt−dksinhγkt+ nj=0,j=k nj=0 djsinhγjt,dj∈R (cj−dj)sinhλjt. ThefunctionTn−Qnchangessignon(0,∞)strictlyatthepointsti,i=0,1,...,n, andhasnootherzeros.Also,byLemma4.5, (sinhλ0t,sinhλ1t,...,sinhλk−1t,sinhγkt,sinhλkt,sinhλk+1t,...,sinhλnt)isaDescartessystemon(0,∞).Hence,byLemma4.6,thesequence (c0−d0,c1−d1,...,ck−1−dk−1,−dk,ck,ck+1−dk+1,...,cn−dn)strictlyalternatesinsign.Since(−1)kck>0,thisimpliesthat (−1)n(Tn−Qn)(t)>0, Thusfort∈(tj,tj+1)wehave (−1)jTn(t)>(−1)jQn(t)>0, j=−1,0,1,...,n,t>tn. ASHARPBERNSTEIN-TYPEINEQUALITY11 wheret−1:=0andtn+1:=∞.Inaddition,werecallthatQn(0)=Tn(0)=0andQn(t0)=Tn(t0)>0. Theobservationsaboveimplythatift0∈(0,x0)issufficientlycloseto0,then Qn[0,1]≤Tn[0,1]=1 Thus and Qn(0)≥Tn(0)>0. |Qn(0)| Tn[0,1] = 0=p∈Hn sup |p(0)| ∈(f(t) −f(−t)). Observethat g∈span{sinhλ1t,sinhλ2t,...,sinhλnt}. Itisalsostraightforwardthat g(0)=f(0) Foragiven>0,let Gn,:=span{sinht,sinh2t,...,sinhnt} and Kn,:=sup|h(0)|:h∈Gn,,h[0,1]=1. and g[0,1]≤f[−1,1]. ByTheorem6.1,itissufficienttoprovethatinf{Kn,:>0}≤2n−1.Observethateveryh∈Gn,isoftheform h(t)=e−ntP(et), P∈P2n. 12 ´ERDELYI´PETERBORWEINANDTAMAS Therefore,usingProposition1.3combinedwithalineartransformationfrom[−1,1] to[e−,e],weobtainforeveryh∈Gn,that |h(0)|=|P(1)−nP(1)| (2n−1)≤ +nenh[−1,1]−1−e (2n−1)= 1−e− +nen. Soinf{Kn,:>0}≤2n−1,andtheresultfollows.Nowweprovethat sup 0=f∈E2n |f(0)| e−1 − 1 e−1 and Rn(t):=Tn e exp t−b e−1− 1 a−y ASHARPBERNSTEIN-TYPEINEQUALITY13 ObviouslyQn,Rn∈Enand |Qn(y)| e−11 y−an kRn[a,b] = foreveryy∈(a,b).Theproofisnowcomplete. ProofofTheorem3.4.WithoutlossofgeneralitywemayassumethatΛ:=(λj)nj=1 isasequenceofdistinctnon-zerorealnumbers.Forthesakeofbrevity,letEn(Λ):=span{1,eλ1t,eλ2t,...,eλnt}. 1on−2satisfyingTakeanorthonormalsequence(Lk)nk=0(1)Lk∈span{1,eλ1t,eλ2t,...,eλkt},and(2) 1/2 −1/2 k=0,1,...,n LiLj=δi,j, 0≤i≤j≤n, whereδi,jistheKroneckersymbol.Onwritingf∈En(Λ)asalinearcombination ofL0,L1,...,Ln,1andusingtheCauchy-Schwarzinequalityandtheorthonormalityn of(Lk)k=0on−2,weobtaininastandardfashionthat max |f(t0)| 0=f∈En(Λ) ∈, 1 kfL2[−1/2,1/2] = nk=0 1/2 L2k(t0) ≤ √ fL2[−1,1] ≤ √ fLp[−2,2] Then max |f(y)| ∈−|y| 1/p . 0=f∈En(Λ) ≤21/pC, y∈[−1,1]. 14 ´ERDELYI´PETERBORWEINANDTAMAS Therefore,foreveryf∈En(Λ), |f(0)|≤ √n+1≤√ 1−p/2 n+121/pCfLp[−2,2] √1/p−1/2 √ 2−pfpLp[−1,1]f[−1,1] 1/2 =2 fLp[−2,2] ≤2 1/p−1/2 δt+t0∈En(Λ),∈ weobtain f[a+δ,b−δ]≤22/p 2 −1/p (n+1)1/p 2 2(b −a)). Proof.Notethatf∈En(Λ)impliesf∈En(Λ).ApplyingTheorem3.4tofwith p=1,weobtain |f(0)|≤2(n+1)fL1[−2,2]=2(n+1)Var[−2,2](f)≤4(n+1)2f[−2,2] foreveryf∈En(Λ).Nowiff∈En(Λ)andt0∈[a+δ,b−δ],thenonapplyingtheaboveinequalityto g(t):=f 1 ASHARPBERNSTEIN-TYPEINEQUALITY15 Remark8.2.Theorems3.2and3.4triviallyextendtotheclasses ∗En:= f:f(t)= lj=1 Pkj(t)eλjt, λj∈R,Pkj∈Pkj, lj=1 (kj+1)=n. Remark8.3.Theorem3.4extendstotheclasses ∗c :=En f:f(t)= lj=1 Pkj(t)eλjt, λj∈C, c Pkj∈Pk,j lj=1 (kj+1)=n, c denotesthefamilyofallpolynomialsofdegreeatmostkjwithcomplexwherePkj coefficients.Thisfollowsbytrivialmodificationsoftheproof. References 1.Borwein,P.B.&T.Erd´elyi,Upperboundsforthederivativeofexponentialsums,Proc.Amer.Math.Soc.123(1995),1481–1486.2.Borwein,P.B.&T.Erd´elyi,Springer-Verlag(1995),NewYork,N.Y..3.Braess,D.,NonlinearApproximationTheory,Springer-Verlag,Berlin,1986. 4.DeVore,R.A.&G.G.Lorentz,ConstructiveApproximation,Springer-Verlag,Berlin,1993.5.Karlin,S.&W.J.Studden,TchebycheffSystemswithApplicationsinAnalysisandStatistics,Wiley,NewYork,N.Y.,1966.6.Lorentz,G.G.,ApproximationofFunctions,2nded.,Chelsea,NewYork,N.Y.,1986.7.Lorentz,G.G.,Notesonapproximation,J.Approx.Theory56(19),360–365.8.Natanson,I.P.,ConstructiveFunctionTheory,Vol.1,,Ungar,NewYork,N.Y.,19.9.Newman,D.J.,DerivativeboundsforM¨untzpolynomials,J.Approx.Theory18(1976),360–362.10.Schmidt,E.,ZurKompaktheitderExponentialsummen,J.Approx.Theory3(1970), 445–459.11.Smith,P.W.,AnimprovementtheoremforDescartessystems,Proc.Amer.Math.Soc. 70(1978),26–30.
因篇幅问题不能全部显示,请点此查看更多更全内容